[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/wrk/warwec/1337.html
   My bibliography  Save this paper

Approximate Maximum Likelihood for Complex Structural Models

Author

Listed:
  • Czellar, Veronika

    (Department of Data Science, Economics and Finance, EDHEC Business School)

  • Frazier, David T.

    (Department of Econometrics and Business Statistics, Monash University)

  • Renault, Eric

    (Department of Economics, University of Warwick and Department of Econometrics and Business Statistics, Monash University.)

Abstract
Indirect Inference (I-I) is a popular technique for estimating complex parametric models whose likelihood function is intractable, however, the statistical efficiency of I-I estimation is questionable. While the efficient method of moments, Gallant and Tauchen (1996), promises e ciency, the price to pay for this efficiency is a loss of parsimony and thereby a potential lack of robustness to model misspecification. This stands in contrast to simpler I-I estimation strategies, which are known to display less sensitivity to model misspecification due in large part to their focus on specific elements of the underlying structural model. In this research, we propose a new simulation-based approach that maintains the parsimony of I-I estimation, which is often critical in empirical applications, but can also deliver estimators that are nearly as efficient as maximum likelihood. This new approach is based on using a constrained approximation to the structural model, which ensures identification and can deliver estimators that are consistent and nearly efficient. We demonstrate this approach through several examples, and show that this approach can deliver estimators that are nearly as efficient as maximum likelihood, when feasible, but can be employed in many situations where maximum likelihood is infeasible.

Suggested Citation

  • Czellar, Veronika & Frazier, David T. & Renault, Eric, 2021. "Approximate Maximum Likelihood for Complex Structural Models," The Warwick Economics Research Paper Series (TWERPS) 1337, University of Warwick, Department of Economics.
  • Handle: RePEc:wrk:warwec:1337
    as

    Download full text from publisher

    File URL: https://warwick.ac.uk/fac/soc/economics/research/workingpapers/2021/twerp_1337_-_renault.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrews,Donald W. K. & Stock,James H. (ed.), 2005. "Identification and Inference for Econometric Models," Cambridge Books, Cambridge University Press, number 9780521844413, September.
    2. Dudley, Leonard & Montmarquette, Claude, 1976. "A Model of the Supply of Bilateral Foreign Aid," American Economic Review, American Economic Association, vol. 66(1), pages 132-142, March.
    3. Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2013. "A Markov-switching multifractal inter-trade duration model, with application to US equities," Journal of Econometrics, Elsevier, vol. 177(2), pages 320-342.
    4. Calvet, Laurent E. & Czellar, Veronika, 2015. "Through the looking glass: Indirect inference via simple equilibria," Journal of Econometrics, Elsevier, vol. 185(2), pages 343-358.
    5. Robinson, Peter M, 1982. "On the Asymptotic Properties of Estimators of Models Containing Limited Dependent Variables," Econometrica, Econometric Society, vol. 50(1), pages 27-41, January.
    6. Philip Hans Franses & Marco van der Leij & Richard Paap, 2008. "A Simple Test for GARCH Against a Stochastic Volatility Model," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 291-306, Summer.
    7. Pinkse, Joris & Slade, Margaret E., 1998. "Contracting in space: An application of spatial statistics to discrete-choice models," Journal of Econometrics, Elsevier, vol. 85(1), pages 125-154, July.
    8. Gospodinov, Nikolay & Komunjer, Ivana & Ng, Serena, 2017. "Simulated minimum distance estimation of dynamic models with errors-in-variables," Journal of Econometrics, Elsevier, vol. 200(2), pages 181-193.
    9. repec:bla:jfinan:v:59:y:2004:i:4:p:1481-1509 is not listed on IDEAS
    10. Gourieroux, C. & Monfort, A. & Trognon, A., 1985. "A General Approach to Serial Correlation," Econometric Theory, Cambridge University Press, vol. 1(3), pages 315-340, December.
    11. Giorgio Calzolari & Gabriele Fiorentini & Enrique Sentana, 2004. "Constrained Indirect Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(4), pages 945-973.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Czellar, Veronika & Frazier, David T. & Renault, Eric, 2022. "Approximate maximum likelihood for complex structural models," Journal of Econometrics, Elsevier, vol. 231(2), pages 432-456.
    2. Veronika Czellar & David T. Frazier & Eric Renault, 2020. "Approximate Maximum Likelihood for Complex Structural Models," Papers 2006.10245, arXiv.org.
    3. David T. Frazier & Eric Renault, 2016. "Indirect Inference With(Out) Constraints," Papers 1607.06163, arXiv.org, revised Aug 2019.
    4. Wang, Honglin & Iglesias, Emma M. & Wooldridge, Jeffrey M., 2013. "Partial maximum likelihood estimation of spatial probit models," Journal of Econometrics, Elsevier, vol. 172(1), pages 77-89.
    5. James Mitchell & Richard J. Smith & Martin R. Weale, 2013. "Efficient Aggregation Of Panel Qualitative Survey Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(4), pages 580-603, June.
    6. Rabovič, Renata & Čížek, Pavel, 2023. "Estimation of spatial sample selection models: A partial maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 232(1), pages 214-243.
    7. Lynda Khalaf & Beatriz Peraza López, 2020. "Simultaneous Indirect Inference, Impulse Responses and ARMA Models," Econometrics, MDPI, vol. 8(2), pages 1-26, April.
    8. Couharde, Cécile & Karanfil, Fatih & Kilama, Eric Gabin & Omgba, Luc Désiré, 2020. "The role of oil in the allocation of foreign aid: The case of the G7 donors," Journal of Comparative Economics, Elsevier, vol. 48(2), pages 363-383.
    9. Grammig, Joachim & Küchlin, Eva-Maria, 2017. "A two-step indirect inference approach to estimate the long-run risk asset pricing model," CFR Working Papers 17-01, University of Cologne, Centre for Financial Research (CFR).
    10. Alperovych, Yan & Cumming, Douglas & Czellar, Veronika & Groh, Alexander, 2021. "M&A rumors about unlisted firms," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1324-1339.
    11. Nan‐Kuang Chen & Hung‐Jen Wang, 2008. "Identifying the Demand and Supply Effects of Financial Crises on Bank Credit—Evidence from Taiwan," Southern Economic Journal, John Wiley & Sons, vol. 75(1), pages 26-49, July.
    12. Lee, Lung-Fei, 1997. "A smooth likelihood simulator for dynamic disequilibrium models," Journal of Econometrics, Elsevier, vol. 78(2), pages 257-294, June.
    13. Ricardo Gonçalves Silva, 2004. "Bayesian Semiparametric Regression for Autoregressive Models with Possible Unit Roots," Econometrics 0405002, University Library of Munich, Germany.
    14. Grammig, Joachim & Küchlin, Eva-Maria, 2018. "A two-step indirect inference approach to estimate the long-run risk asset pricing model," Journal of Econometrics, Elsevier, vol. 205(1), pages 6-33.
    15. Pastorello, Sergio & Patilea, Valentin & Renault, Eric, 2003. "Iterative and Recursive Estimation in Structural Nonadaptive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 449-482, October.
    16. Grammig, Joachim & Küchlin, Eva-Maria, 2017. "A two-step indirect inference approach to estimate the long-run risk asset pricing model," CFS Working Paper Series 572, Center for Financial Studies (CFS).
    17. Francisco J. Ruge-Murcia, 2000. "Uncovering financial markets' beliefs about inflation targets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 483-512.
    18. Andersson, Mats & Smith, Andrew & Wikberg, Åsa & Wheat, Phill, 2012. "Estimating the marginal cost of railway track renewals using corner solution models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(6), pages 954-964.
    19. Vieira, Flávio & MacDonald, Ronald & Damasceno, Aderbal, 2012. "The role of institutions in cross-section income and panel data growth models: A deeper investigation on the weakness and proliferation of instruments," Journal of Comparative Economics, Elsevier, vol. 40(1), pages 127-140.
    20. Laisney, François & Pohlmeier, Winfried & Staat, Matthias, 1991. "Estimation of labour supply functions using panel data: a survey," ZEW Discussion Papers 91-05, ZEW - Leibniz Centre for European Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wrk:warwec:1337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Margaret Nash (email available below). General contact details of provider: https://edirc.repec.org/data/dewaruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.