[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v17y2008i1p69-82.html
   My bibliography  Save this article

One-sided tests in shared frailty models

Author

Listed:
  • Gerda Claeskens
  • Rosemary Nguti
  • Paul Janssen
Abstract
No abstract is available for this item.

Suggested Citation

  • Gerda Claeskens & Rosemary Nguti & Paul Janssen, 2008. "One-sided tests in shared frailty models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(1), pages 69-82, May.
  • Handle: RePEc:spr:testjl:v:17:y:2008:i:1:p:69-82
    DOI: 10.1007/s11749-006-0023-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-006-0023-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-006-0023-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duchateau, Luc & Janssen, Paul & Lindsey, Patrick & Legrand, Catherine & Nguti, Rosemary & Sylvester, Richard, 2002. "The shared frailty model and the power for heterogeneity tests in multicenter trials," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 603-620, September.
    2. Geert Verbeke & Geert Molenberghs, 2003. "The Use of Score Tests for Inference on Variance Components," Biometrics, The International Biometric Society, vol. 59(2), pages 254-262, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiaohu & Lin, Jianhua, 2011. "Stochastic orders in time transformed exponential models with applications," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 47-52, July.
    2. Bijwaard, Govert, 2011. "Unobserved Heterogeneity in Multiple-Spell Multiple-States Duration Models," IZA Discussion Papers 5748, Institute of Labor Economics (IZA).
    3. Steffen Unkel, 2017. "On the shape of the cross-ratio function in bivariate survival models induced by truncated and folded normal frailty distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(3), pages 351-362, April.
    4. Hideatsu Tsukahara, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 287-289, August.
    5. Ram Thapa & Harold E. Burkhart & Jie Li & Yili Hong, 2016. "Modeling Clustered Survival Times of Loblolly Pine with Time-dependent Covariates and Shared Frailties," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 92-110, March.
    6. Dennis Schmidt & Rainer Schwabe, 2015. "On optimal designs for censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(3), pages 237-257, April.
    7. Candida Geerdens & Gerda Claeskens & Paul Janssen, 2016. "Copula based flexible modeling of associations between clustered event times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 363-381, July.
    8. Swanepoel, J.W.H. & Allison, J.S., 2013. "Some new results on the empirical copula estimator with applications," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1731-1739.
    9. Bas Straathof & Sander van Veldhuizen, 2012. "Market size, institutions, and the value of rights provided by patents," CPB Discussion Paper 226, CPB Netherlands Bureau for Economic Policy Analysis.
    10. Munda, Marco & Rotolo, Federico & Legrand, Catherine, 2012. "parfm: Parametric Frailty Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i11).
    11. Balkema, A.A. & Embrechts, P. & Nolde, N., 2010. "Meta densities and the shape of their sample clouds," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1738-1754, August.
    12. Neil Murray & Heike Link, 2020. "A Duration Approach for Estimating the Marginal Renewal Cost at German Motorways," Discussion Papers of DIW Berlin 1898, DIW Berlin, German Institute for Economic Research.
    13. Paul Embrechts & Marius Hofert, 2011. "Comments on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 263-270, August.
    14. Xu, Wenjing & Pan, Qing & Gastwirth, Joseph L., 2014. "Cox proportional hazards models with frailty for negatively correlated employment processes," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 295-307.
    15. Marco Munda & Catherine Legrand & Luc Duchateau & Paul Janssen, 2016. "Testing for decreasing heterogeneity in a new time-varying frailty model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(4), pages 591-606, December.
    16. Balakrishnan, N. & Pal, Suvra, 2013. "Lognormal lifetimes and likelihood-based inference for flexible cure rate models based on COM-Poisson family," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 41-67.
    17. Bedair, Khaled & Hong, Yili & Li, Jie & Al-Khalidi, Hussein R., 2016. "Multivariate frailty models for multi-type recurrent event data and its application to cancer prevention trial," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 161-173.
    18. Wienke, Andreas & Kuss, Oliver, 2009. "Random effects Weibull regression model for occupational lifetime," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1249-1250, August.
    19. José Romeo & Nelson Tanaka & Antonio Pedroso-de-Lima & Victor Salinas-Torres, 2013. "Large sample properties for a class of copulas in bivariate survival analysis," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(8), pages 997-1015, November.
    20. Rondeau, Virginie & Marzroui, Yassin & Gonzalez, Juan R., 2012. "frailtypack: An R Package for the Analysis of Correlated Survival Data with Frailty Models Using Penalized Likelihood Estimation or Parametrical Estimation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 47(i04).
    21. Ramesh Gupta, 2016. "Properties of additive frailty model in survival analysis," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 1-17, January.
    22. N. Balakrishnan & Suvra Pal, 2015. "An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood- and information-based methods," Computational Statistics, Springer, vol. 30(1), pages 151-189, March.
    23. Vallejos, Catalina A. & Steel, Mark F.J., 2017. "Incorporating unobserved heterogeneity in Weibull survival models: A Bayesian approach," Econometrics and Statistics, Elsevier, vol. 3(C), pages 73-88.
    24. Virginia Zarulli, 2016. "Unobserved Heterogeneity of Frailty in the Analysis of Socioeconomic Differences in Health and Mortality," European Journal of Population, Springer;European Association for Population Studies, vol. 32(1), pages 55-72, February.
    25. James W. Vaupel & Trifon Missov, 2014. "Unobserved population heterogeneity," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 31(22), pages 659-686.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeonghwan Kim & Woojoo Lee, 2019. "On testing the hidden heterogeneity in negative binomial regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(4), pages 457-470, May.
    2. Benjamin R. Saville & Amy H. Herring, 2009. "Testing Random Effects in the Linear Mixed Model Using Approximate Bayes Factors," Biometrics, The International Biometric Society, vol. 65(2), pages 369-376, June.
    3. Karl Schweizer & Siegbert Reiß, 2019. "On the Contextual Conditions Driving a Difficulty Factor," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(5), pages 1-12, September.
    4. David Todem & Wei‐Wen Hsu & KyungMann Kim, 2023. "Nonparametric scanning tests of homogeneity for hierarchical models with continuous covariates," Biometrics, The International Biometric Society, vol. 79(3), pages 2063-2075, September.
    5. Long Qu & Tobias Guennel & Scott L. Marshall, 2013. "Linear Score Tests for Variance Components in Linear Mixed Models and Applications to Genetic Association Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 883-892, December.
    6. Oliver E. Lee & Thomas M. Braun, 2012. "Permutation Tests for Random Effects in Linear Mixed Models," Biometrics, The International Biometric Society, vol. 68(2), pages 486-493, June.
    7. Sun-Joo Cho & Paul Boeck & Susan Embretson & Sophia Rabe-Hesketh, 2014. "Additive Multilevel Item Structure Models with Random Residuals: Item Modeling for Explanation and Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 84-104, January.
    8. Samuel Iddi & Geert Molenberghs, 2012. "A joint marginalized multilevel model for longitudinal outcomes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2413-2430, July.
    9. Bo-Hong Wu & Hirofumi Michimae & Takeshi Emura, 2020. "Meta-analysis of individual patient data with semi-competing risks under the Weibull joint frailty–copula model," Computational Statistics, Springer, vol. 35(4), pages 1525-1552, December.
    10. Mojtaba Ganjali & T. Baghfalaki & D. Berridge, 2014. "A Bayesian Analysis of Unobserved Heterogeneity for Unemployment Duration Data in the Presence of Interval Censoring," International Econometric Review (IER), Econometric Research Association, vol. 6(1), pages 24-41, April.
    11. Mingan Yang & Min Wang & Guanghui Dong, 2020. "Bayesian variable selection for mixed effects model with shrinkage prior," Computational Statistics, Springer, vol. 35(1), pages 227-243, March.
    12. Morris Nathan J & Elston Robert & Stein Catherine M, 2009. "Calculating Asymptotic Significance Levels of the Constrained Likelihood Ratio Test with Application to Multivariate Genetic Linkage Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-34, September.
    13. Lim, Hwa Kyung & Song, Juwon & Jung, Byoung Cheol, 2013. "Score tests for zero-inflation and overdispersion in two-level count data," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 67-82.
    14. Derek Dinart & Carine Bellera & Virginie Rondeau, 2022. "Sample size estimation for cancer randomized trials in the presence of heterogeneous populations," Biometrics, The International Biometric Society, vol. 78(4), pages 1662-1673, December.
    15. Massimo Ventrucci & Daniela Cocchi & Gemma Burgazzi & Alex Laini, 2020. "PC priors for residual correlation parameters in one-factor mixed models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(4), pages 745-765, December.
    16. Munda, Marco & Rotolo, Federico & Legrand, Catherine, 2012. "parfm: Parametric Frailty Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i11).
    17. Casey Codd & Robert Cudeck, 2014. "Nonlinear Random-Effects Mixture Models for Repeated Measures," Psychometrika, Springer;The Psychometric Society, vol. 79(1), pages 60-83, January.
    18. Satkartar K. Kinney & David B. Dunson, 2007. "Fixed and Random Effects Selection in Linear and Logistic Models," Biometrics, The International Biometric Society, vol. 63(3), pages 690-698, September.
    19. Marco Barnabani, 2015. "A parametric test to discriminate between a linear regression model and a linear latent growth model," Econometrics Working Papers Archive 2015_04, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    20. Gumedze, Freedom N. & Welham, Sue J. & Gogel, Beverley J. & Thompson, Robin, 2010. "A variance shift model for detection of outliers in the linear mixed model," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2128-2144, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:17:y:2008:i:1:p:69-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.