[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v47y2014i2p427-450.html
   My bibliography  Save this article

On the choice of regularization parameters in specification testing: a critical discussion

Author

Listed:
  • Stefan Sperlich
Abstract
This article reviews and discusses the problem of choosing smoothing parameters and resampling schemes for specification tests in econometrics. While smoothing is used for the regularization of the non-specified parts of the null hypothesis and omnibus alternatives, the resampling serves for determining the critical value. Several of the existing selection methods are discussed, implemented, and compared. This has been done for cross-sectional data along the example of additivity testing. Doubtless, all problems considered here carry over to specification testing with dependent data. Intensive simulations illustrate that this is still an open problem that easily corrupts these tests in practice. Possible ways out of the dilemma are proposed. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Stefan Sperlich, 2014. "On the choice of regularization parameters in specification testing: a critical discussion," Empirical Economics, Springer, vol. 47(2), pages 427-450, September.
  • Handle: RePEc:spr:empeco:v:47:y:2014:i:2:p:427-450
    DOI: 10.1007/s00181-013-0752-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00181-013-0752-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00181-013-0752-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Jiti & Gijbels, Irène, 2008. "Bandwidth Selection in Nonparametric Kernel Testing," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1584-1594.
    2. Gozalo, Pedro L. & Linton, Oliver B., 2001. "Testing additivity in generalized nonparametric regression models with estimated parameters," Journal of Econometrics, Elsevier, vol. 104(1), pages 1-48, August.
    3. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "Rejoinder on: An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 442-447, September.
    4. Delgado, Miguel A. & Rodriguez-Poo, Juan M. & Wolf, Michael, 2001. "Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator," Economics Letters, Elsevier, vol. 73(2), pages 241-250, November.
    5. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    6. Gonzalez Manteiga, W. & Martinez Miranda, M. D. & Perez Gonzalez, A., 2004. "The choice of smoothing parameter in nonparametric regression through Wild Bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 487-515, October.
    7. Hengartner, Nicolas W. & Sperlich, Stefan, 2005. "Rate optimal estimation with the integration method in the presence of many covariates," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 246-272, August.
    8. Oliver Linton & E. Mammen & J. Nielsen, 1997. "The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions," Cowles Foundation Discussion Papers 1160, Cowles Foundation for Research in Economics, Yale University.
    9. Chen, Song Xi & Gao, Jiti, 2007. "An adaptive empirical likelihood test for parametric time series regression models," Journal of Econometrics, Elsevier, vol. 141(2), pages 950-972, December.
    10. Horowitz, Joel L & Spokoiny, Vladimir G, 2001. "An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model against a Nonparametric Alternative," Econometrica, Econometric Society, vol. 69(3), pages 599-631, May.
    11. Natalie Neumeyer & Stefan Sperlich, 2006. "Comparison of Separable Components in Different Samples," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 477-501, September.
    12. Roca-Pardinas, Javier & Sperlich, Stefan, 2007. "Testing the link when the index is semiparametric--a comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6565-6581, August.
    13. Su, Liangjun & White, Halbert, 2010. "Testing Structural Change In Partially Linear Models," Econometric Theory, Cambridge University Press, vol. 26(6), pages 1761-1806, December.
    14. Cao, R., 1993. "Bootstrapping the Mean Integrated Squared Error," Journal of Multivariate Analysis, Elsevier, vol. 45(1), pages 137-160, April.
    15. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    16. Liangjun Su & Irina Murtazashvili & Aman Ullah, 2013. "Local Linear GMM Estimation of Functional Coefficient IV Models With an Application to Estimating the Rate of Return to Schooling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 184-207, April.
    17. Emmanuel Guerre & Pascal Lavergne, 2004. "Data-Driven Rate-Optimal Specification Testing In Regression Models," Econometrics 0411008, University Library of Munich, Germany.
    18. Gao, Jiti & Gijbels, Irene & Van Bellegem, Sebastien, 2008. "Nonparametric simultaneous testing for structural breaks," Journal of Econometrics, Elsevier, vol. 143(1), pages 123-142, March.
    19. Stefan Sperlich & Oliver Linton & Wolfgang Härdle, 1999. "Integration and backfitting methods in additive models-finite sample properties and comparison," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(2), pages 419-458, December.
    20. Simon N. Wood, 2008. "Fast stable direct fitting and smoothness selection for generalized additive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(3), pages 495-518, July.
    21. Zhang, Chunming, 2003. "Calibrating the Degrees of Freedom for Automatic Data Smoothing and Effective Curve Checking," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 609-628, January.
    22. John Xu Zheng, 1996. "A consistent test of functional form via nonparametric estimation techniques," Journal of Econometrics, Elsevier, vol. 75(2), pages 263-289, December.
    23. Jens Perch Nielsen & Stefan Sperlich, 2005. "Smooth backfitting in practice," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 43-61, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bianco, Ana M. & Boente, Graciela & González-Manteiga, Wenceslao & Pérez-González, Ana, 2015. "Robust inference in partially linear models with missing responses," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 88-98.
    2. Henderson, Daniel J. & Sperlich, Stefan, 2022. "A Complete Framework for Model-Free Difference-in-Differences Estimation," IZA Discussion Papers 15799, Institute of Labor Economics (IZA).
    3. Jing Dai & Stefan Sperlich & Walter Zucchini, 2016. "A Simple Method for Predicting Distributions by Means of Covariates with Examples from Poverty and Health Economics," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 152(I), pages 49-80, March.
    4. Henderson, Daniel J. & Sheehan, Alice, 2018. "Kernel-based testing with skewed and heavy-tailed data: Evidence from a nonparametric test for heteroskedasticity," Economics Letters, Elsevier, vol. 172(C), pages 8-11.
    5. Ivan Korolev, 2018. "A Consistent Heteroskedasticity Robust LM Type Specification Test for Semiparametric Models," Papers 1810.07620, arXiv.org, revised Nov 2019.
    6. Xu Guo & Wangli Xu & Lixing Zhu, 2015. "Model checking for parametric regressions with response missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 229-259, April.
    7. Stefan Sperlich, 2022. "Comments on: hybrid semiparametric Bayesian networks," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 335-339, June.
    8. Stefan Sperlich & Jose-Ramon Uriarte, 2019. "The economics of minority language use: theory and empirical evidence for a language game model," Papers 1908.11604, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    2. Stefan Sperlich, 2013. "Comments on: An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 419-427, September.
    3. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    4. Berthold R. Haag, 2008. "Non‐parametric Regression Tests Using Dimension Reduction Techniques," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(4), pages 719-738, December.
    5. Holger Dette & Matthias Guhlich & Natalie Neumeyer, 2015. "Testing for additivity in nonparametric quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(3), pages 437-477, June.
    6. Kohtaro Hitomi & Masamune Iwasawa & Yoshihiko Nishiyama, 2023. "Optimal minimax rates of specification testing with data-driven bandwidth," Econometric Reviews, Taylor & Francis Journals, vol. 42(6), pages 487-512, June.
    7. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    8. Li, Hongjun & Li, Qi & Liu, Ruixuan, 2016. "Consistent model specification tests based on k-nearest-neighbor estimation method," Journal of Econometrics, Elsevier, vol. 194(1), pages 187-202.
    9. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers CWP20/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Joel L. Horowitz, 2012. "Nonparametric additive models," CeMMAP working papers 20/12, Institute for Fiscal Studies.
    11. Cuizhen Niu & Lixing Zhu, 2018. "A robust adaptive-to-model enhancement test for parametric single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1013-1045, October.
    12. Su, Liangjun & Jin, Sainan & Zhang, Yonghui, 2015. "Specification test for panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 186(1), pages 222-244.
    13. Kohtaro Hitomi & Masamune Iwasawa & Yoshihiko Nishiyama, 2022. "Optimal minimax rates against nonsmooth alternatives [Optimal testing for additivity in multiple nonparametric regression]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 322-339.
    14. Bagkavos, Dimitrios & Patil, Prakash N. & Wood, Andrew T.A., 2023. "Nonparametric goodness-of-fit testing for a continuous multivariate parametric model," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    15. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    16. Long Feng & Changliang Zou & Zhaojun Wang & Lixing Zhu, 2015. "Robust comparison of regression curves," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 185-204, March.
    17. Russell Davidson & Victoria Zinde‐Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1595-1631, December.
    18. Andrea Vaona, 2008. "The sensitivity of nonparametric misspecification tests to disturbance autocorrelation," Quaderni della facoltà di Scienze economiche dell'Università di Lugano 0803, USI Università della Svizzera italiana.
    19. Gao, Jiti & King, Maxwell, 2003. "Estimation and model specification testing in nonparametric and semiparametric econometric models," MPRA Paper 11989, University Library of Munich, Germany, revised Feb 2006.
    20. Masamune Iwasawa, 2015. "A Joint Specification Test for Response Probabilities in Unordered Multinomial Choice Models," Econometrics, MDPI, vol. 3(3), pages 1-31, September.

    More about this item

    Keywords

    Nonparametric specification tests; Adaptive testing ; Bandwidth choice; Bootstrap; Subsampling; C12; C14; C52;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:47:y:2014:i:2:p:427-450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.