[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2017i1p19-d123917.html
   My bibliography  Save this article

Low-Carbon Transportation Oriented Urban Spatial Structure: Theory, Model and Case Study

Author

Listed:
  • Yuyao Ye

    (Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangzhou 510070, China)

  • Changjian Wang

    (Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangzhou 510070, China)

  • Yuling Zhang

    (Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangzhou 510070, China)

  • Kangmin Wu

    (Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangzhou 510070, China
    Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
    College of Resources and Environment, University of Chinese Academy of Science, Beijing 100049, China)

  • Qitao Wu

    (Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangzhou 510070, China)

  • Yongxian Su

    (Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangzhou 510070, China)

Abstract
Optimising the spatial structure of cities to promote low-carbon travel is a primary goal of urban planning and construction innovation in the low-carbon era. There is a need for basic research on the structural characteristics that help to reduce motor traffic, thereby promoting energy conservation. We first review the existing literature on the influence of urban spatial structure on transport carbon dioxide emissions and summarise the influence mechanisms. We then present two low-carbon transportation oriented patterns of urban spatial structure including the traditional walking city and the modern transit metropolis, illustrated by case studies. Furthermore, we propose an improved model Green Transportation System Oriented Development (GTOD), which is an extension of traditional transit-oriented development (TOD) and includes the additional features of a walking city and an emphasis on the integration of land use with a green transportation system, consisting of the public transportation and non-auto travel system. A compact urban form, effective mix of land use and appropriate scale of block are the basic structural features of a low-carbon transportation city. However, these features are only effective at promoting low-carbon transportation when integrated with the green traffic systems. Proper integration of the urban structural system with the green space system is also required. The optimal land use/transportation integration strategy is to divide traffic corridors with wedge-shaped green spaces and limit development along the transit corridors. This strategy forms the basis of the proposed urban structural model to promote low-carbon transportation and sustainable urban growth management.

Suggested Citation

  • Yuyao Ye & Changjian Wang & Yuling Zhang & Kangmin Wu & Qitao Wu & Yongxian Su, 2017. "Low-Carbon Transportation Oriented Urban Spatial Structure: Theory, Model and Case Study," Sustainability, MDPI, vol. 10(1), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2017:i:1:p:19-:d:123917
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/1/19/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/1/19/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nakamura, Kazuki & Hayashi, Yoshitsugu, 2013. "Strategies and instruments for low-carbon urban transport: An international review on trends and effects," Transport Policy, Elsevier, vol. 29(C), pages 264-274.
    2. D Banister & S Watson & C Wood, 1997. "Sustainable Cities: Transport, Energy, and Urban Form," Environment and Planning B, , vol. 24(1), pages 125-143, February.
    3. Julia K. Steinberger & J. Timmons Roberts & Glen P. Peters & Giovanni Baiocchi, 2012. "Pathways of human development and carbon emissions embodied in trade," Nature Climate Change, Nature, vol. 2(2), pages 81-85, February.
    4. B.V. Venkatarama Reddy, 2009. "Sustainable materials for low carbon buildings," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 4(3), pages 175-181, June.
    5. Glaeser, Edward L. & Kahn, Matthew E., 2010. "The greenness of cities: Carbon dioxide emissions and urban development," Journal of Urban Economics, Elsevier, vol. 67(3), pages 404-418, May.
    6. Fabio Grazi & Jeroen C.J.M. van den Bergh & Jos N. van Ommeren, 2008. "An Empirical Analysis of Urban Form, Transport, and Global Warming," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 97-122.
    7. Tim Schwanen & Martin Dijst & Frans M. Dieleman, 2004. "Policies for Urban Form and their Impact on Travel: The Netherlands Experience," Urban Studies, Urban Studies Journal Limited, vol. 41(3), pages 579-603, March.
    8. Mindali, Orit & Raveh, Adi & Salomon, Ilan, 2004. "Urban density and energy consumption: a new look at old statistics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(2), pages 143-162, February.
    9. Josep Roca Cladera & Carlos R. Marmolejo Duarte & Montserrat Moix, 2009. "Urban Structure and Polycentrism: Towards a Redefinition of the Sub-centre Concept," Urban Studies, Urban Studies Journal Limited, vol. 46(13), pages 2841-2868, December.
    10. Robert B. Jackson & Josep G. Canadell & Corinne Le Quéré & Robbie M. Andrew & Jan Ivar Korsbakken & Glen P. Peters & Nebojsa Nakicenovic, 2016. "Reaching peak emissions," Nature Climate Change, Nature, vol. 6(1), pages 7-10, January.
    11. Jen-Jia Lin & An-Tsei Yang, 2009. "Structural Analysis of How Urban Form Impacts Travel Demand: Evidence from Taipei," Urban Studies, Urban Studies Journal Limited, vol. 46(9), pages 1951-1967, August.
    12. Antti Vasanen, 2012. "Functional Polycentricity: Examining Metropolitan Spatial Structure through the Connectivity of Urban Sub-centres," Urban Studies, Urban Studies Journal Limited, vol. 49(16), pages 3627-3644, December.
    13. Young, Mischa & Tanguay, Georges A. & Lachapelle, Ugo, 2016. "Transportation costs and urban sprawl in Canadian metropolitan areas," Research in Transportation Economics, Elsevier, vol. 60(C), pages 25-34.
    14. Eugene A. Rosa & Thomas Dietz, 2012. "Human drivers of national greenhouse-gas emissions," Nature Climate Change, Nature, vol. 2(8), pages 581-586, August.
    15. Cynthia Chen & Hongmian Gong & Robert Paaswell, 2008. "Role of the built environment on mode choice decisions: additional evidence on the impact of density," Transportation, Springer, vol. 35(3), pages 285-299, May.
    16. Hankey, Steve & Marshall, Julian D., 2010. "Impacts of urban form on future US passenger-vehicle greenhouse gas emissions," Energy Policy, Elsevier, vol. 38(9), pages 4880-4887, September.
    17. Edmund J Zolnik, 2011. "The Effects of Sprawl on Private-Vehicle Commuting Distances and Times," Environment and Planning B, , vol. 38(6), pages 1071-1084, December.
    18. William P. Anderson & Pavlos S. Kanaroglou & Eric J. Miller, 1996. "Urban Form, Energy and the Environment: A Review of Issues, Evidence and Policy," Urban Studies, Urban Studies Journal Limited, vol. 33(1), pages 7-35, February.
    19. Travisi, Chiara M. & Camagni, Roberto & Nijkamp, Peter, 2010. "Impacts of urban sprawl and commuting: a modelling study for Italy," Journal of Transport Geography, Elsevier, vol. 18(3), pages 382-392.
    20. Fang, Hao Audrey, 2008. "A discrete-continuous model of households' vehicle choice and usage, with an application to the effects of residential density," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 736-758, November.
    21. Jared R. VandeWeghe & Christopher Kennedy, 2007. "A Spatial Analysis of Residential Greenhouse Gas Emissions in the Toronto Census Metropolitan Area," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 133-144, April.
    22. Grazi, Fabio & van den Bergh, Jeroen C.J.M., 2008. "Spatial organization, transport, and climate change: Comparing instruments of spatial planning and policy," Ecological Economics, Elsevier, vol. 67(4), pages 630-639, November.
    23. David M. Levinson & Ajay Kumar, 1997. "Density and the Journey to Work," Growth and Change, Wiley Blackwell, vol. 28(2), pages 147-172, March.
    24. Wang, Changjian & Wang, Fei & Zhang, Xinlin & Yang, Yu & Su, Yongxian & Ye, Yuyao & Zhang, Hongou, 2017. "Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 51-61.
    25. Edmund J Zolnik, 2011. "The Effect of Sprawl on Private-Vehicle Commuting Outcomes," Environment and Planning A, , vol. 43(8), pages 1875-1893, August.
    26. Shekarchian, M. & Moghavvemi, M. & Zarifi, F. & Moghavvemi, S. & Motasemi, F. & Mahlia, T.M.I., 2017. "Impact of infrastructural policies to reduce travel time expenditure of car users with significant reductions in energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 327-335.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rogier Pennings & Bart Wiegmans & Tejo Spit, 2020. "Can We Have Our Cake and Still Eat It? A Review of Flexibility in the Structural Spatial Development and Passenger Transport Relation in Developing Countries," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    2. Abolfazl Dehghanmongabadi & Åžebnem HoÅŸkara, 2020. "Determinative Variables Toward Promoting Use of Active Modes of Transportation: Enhancing Level of Sustainable Mobility in Communities," SAGE Open, , vol. 10(3), pages 21582440209, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheol Hee Son & Jong In Baek & Yong Un Ban, 2018. "Structural Impact Relationships Between Urban Development Intensity Characteristics and Carbon Dioxide Emissions in Korea," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    2. Felipe Livert Aquino & Xabier Gainza, 2014. "Understanding Density in an Uneven City, Santiago de Chile: Implications for Social and Environmental Sustainability," Sustainability, MDPI, vol. 6(9), pages 1-22, September.
    3. Lee, Sungwon & Lee, Bumsoo, 2014. "The influence of urban form on GHG emissions in the U.S. household sector," Energy Policy, Elsevier, vol. 68(C), pages 534-549.
    4. Lara Engelfriet & Eric Koomen, 2018. "The impact of urban form on commuting in large Chinese cities," Transportation, Springer, vol. 45(5), pages 1269-1295, September.
    5. Safirova, Elena A. & Houde, Sébastien & Harrington, Winston, 2007. "Spatial Development and Energy Consumption," RFF Working Paper Series dp-07-51, Resources for the Future.
    6. Tae-Hyoung Gim, 2012. "A meta-analysis of the relationship between density and travel behavior," Transportation, Springer, vol. 39(3), pages 491-519, May.
    7. Fang, Chuanglin & Wang, Shaojian & Li, Guangdong, 2015. "Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities," Applied Energy, Elsevier, vol. 158(C), pages 519-531.
    8. Achim Ahrens & Seán Lyons, 2019. "Changes in Land Cover and Urban Sprawl in Ireland From a Comparative Perspective Over 1990–2012," Land, MDPI, vol. 8(1), pages 1-14, January.
    9. Ahfeldt, Gabriel M. & Pietrostefani, Elisabetta, 2017. "The compact city in empirical research: A quantitative literature review," LSE Research Online Documents on Economics 83638, London School of Economics and Political Science, LSE Library.
    10. Changlong Sun & Yongli Zhang & Wenwen Ma & Rong Wu & Shaojian Wang, 2022. "The Impacts of Urban Form on Carbon Emissions: A Comprehensive Review," Land, MDPI, vol. 11(9), pages 1-20, August.
    11. Maged Senbel & Waleed Giratalla & Kevin Zhang & Meidad Kissinger, 2014. "Compact Development without Transit: Life-Cycle GHG Emissions from Four Variations of Residential Density in Vancouver," Environment and Planning A, , vol. 46(5), pages 1226-1243, May.
    12. Huihui Wang & Weihua Zeng, 2019. "Revealing Urban Carbon Dioxide (CO 2 ) Emission Characteristics and Influencing Mechanisms from the Perspective of Commuting," Sustainability, MDPI, vol. 11(2), pages 1-22, January.
    13. Amedeo Ganciu & Mara Balestrieri & Cristina Imbroglini & Fabrizio Toppetti, 2018. "Dynamics of Metropolitan Landscapes and Daily Mobility Flows in the Italian Context. An Analysis Based on the Theory of Graphs," Sustainability, MDPI, vol. 10(3), pages 1-27, February.
    14. Gabriel M. Ahfeldt & Elisabetta Pietrostefani, 2017. "The Compact City in Empirical Research: A Quantitative Literature Review," SERC Discussion Papers 0215, Centre for Economic Performance, LSE.
    15. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    16. Modarres, Ali, 2013. "Commuting and energy consumption: toward an equitable transportation policy," Journal of Transport Geography, Elsevier, vol. 33(C), pages 240-249.
    17. Qing Su, 2017. "Travel Demand Management Policy Instruments, Urban Spatial Characteristics, and Household Greenhouse Gas Emissions from Travel in the US Urban Areas," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 157-166.
    18. Jing Tao & Ying Wang & Rong Wang & Chuanmin Mi, 2019. "Do Compactness and Poly-Centricity Mitigate PM 10 Emissions? Evidence from Yangtze River Delta Area," IJERPH, MDPI, vol. 16(21), pages 1-18, October.
    19. Ahlfeldt, Gabriel M. & Pietrostefani, Elisabetta, 2019. "The economic effects of density: A synthesis," Journal of Urban Economics, Elsevier, vol. 111(C), pages 93-107.
    20. Betul Gokkir & J. Samuel Barkin, 2019. "Are liberal states greener? Political ideology and CO2 emissions in American states, 1980–2012," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 9(4), pages 386-396, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2017:i:1:p:19-:d:123917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.