[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v11y2018i3p52-d167993.html
   My bibliography  Save this article

Risk, Return and Volatility Feedback: A Bayesian Nonparametric Analysis

Author

Listed:
  • Mark J. Jensen

    (Federal Reserve Bank of Atlanta, 1000 Peachtree St NE, Atlanta, GA 30309, USA)

  • John M. Maheu

    (DeGroote School of Business, McMaster University, 1280 Main Street W., Hamilton, ON L8S4M4, Canada)

Abstract
In this paper, we let the data speak for itself about the existence of volatility feedback and the often debated risk–return relationship. We do this by modeling the contemporaneous relationship between market excess returns and log-realized variances with a nonparametric, infinitely-ordered, mixture representation of the observables’ joint distribution. Our nonparametric estimator allows for deviation from conditional Gaussianity through non-zero, higher ordered, moments, like asymmetric, fat-tailed behavior, along with smooth, nonlinear, risk–return relationships. We use the parsimonious and relatively uninformative Bayesian Dirichlet process prior to overcoming the problem of having too many unknowns and not enough observations. Applying our Bayesian nonparametric model to more than a century’s worth of monthly US stock market returns and realized variances, we find strong, robust evidence of volatility feedback. Once volatility feedback is accounted for, we find an unambiguous positive, nonlinear, relationship between expected excess returns and expected log-realized variance. In addition to the conditional mean, volatility feedback impacts the entire joint distribution.

Suggested Citation

  • Mark J. Jensen & John M. Maheu, 2018. "Risk, Return and Volatility Feedback: A Bayesian Nonparametric Analysis," JRFM, MDPI, vol. 11(3), pages 1-29, September.
  • Handle: RePEc:gam:jjrfmx:v:11:y:2018:i:3:p:52-:d:167993
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/11/3/52/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/11/3/52/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Maheu, John M. & McCurdy, Thomas H. & Zhao, Xiaofei, 2013. "Do jumps contribute to the dynamics of the equity premium?," Journal of Financial Economics, Elsevier, vol. 110(2), pages 457-477.
    2. Harvey, Campbell R., 2001. "The specification of conditional expectations," Journal of Empirical Finance, Elsevier, vol. 8(5), pages 573-637, December.
    3. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    4. Turner, Christopher M. & Startz, Richard & Nelson, Charles R., 1989. "A Markov model of heteroskedasticity, risk, and learning in the stock market," Journal of Financial Economics, Elsevier, vol. 25(1), pages 3-22, November.
    5. Maheu, John M. & McCurdy, Thomas H., 2011. "Do high-frequency measures of volatility improve forecasts of return distributions?," Journal of Econometrics, Elsevier, vol. 160(1), pages 69-76, January.
    6. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    7. Jensen, Mark J. & Maheu, John M., 2013. "Bayesian semiparametric multivariate GARCH modeling," Journal of Econometrics, Elsevier, vol. 176(1), pages 3-17.
    8. Hui Guo & Robert F. Whitelaw, 2006. "Uncovering the Risk–Return Relation in the Stock Market," Journal of Finance, American Finance Association, vol. 61(3), pages 1433-1463, June.
    9. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    10. repec:bla:jfinan:v:53:y:1998:i:2:p:575-603 is not listed on IDEAS
    11. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    12. Ludvigson, Sydney C. & Ng, Serena, 2007. "The empirical risk-return relation: A factor analysis approach," Journal of Financial Economics, Elsevier, vol. 83(1), pages 171-222, January.
    13. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    14. Hui Guo, 2006. "The Risk‐Return Relation in International Stock Markets," The Financial Review, Eastern Finance Association, vol. 41(4), pages 565-587, November.
    15. Calvet, Laurent E. & Fisher, Adlai J., 2007. "Multifrequency news and stock returns," Journal of Financial Economics, Elsevier, vol. 86(1), pages 178-212, October.
    16. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
    17. Greenberg,Edward, 2014. "Introduction to Bayesian Econometrics," Cambridge Books, Cambridge University Press, number 9781107436770.
    18. John M. Maheu & Thomas H. McCurdy, 2007. "Components of Market Risk and Return," Journal of Financial Econometrics, Oxford University Press, vol. 5(4), pages 560-590, Fall.
    19. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    20. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    21. Burda, Martin & Harding, Matthew & Hausman, Jerry, 2008. "A Bayesian mixed logit-probit model for multinomial choice," Journal of Econometrics, Elsevier, vol. 147(2), pages 232-246, December.
    22. Chib, Siddhartha & Greenberg, Edward, 2010. "Additive cubic spline regression with Dirichlet process mixture errors," Journal of Econometrics, Elsevier, vol. 156(2), pages 322-336, June.
    23. Jensen, Mark J. & Maheu, John M., 2014. "Estimating a semiparametric asymmetric stochastic volatility model with a Dirichlet process mixture," Journal of Econometrics, Elsevier, vol. 178(P3), pages 523-538.
    24. Ishwaran H. & James L. F, 2001. "Gibbs Sampling Methods for Stick Breaking Priors," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 161-173, March.
    25. Delatola, E.-I. & Griffin, J.E., 2013. "A Bayesian semiparametric model for volatility with a leverage effect," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 97-110.
    26. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    27. David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CARF F-Series CARF-F-197, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2010.
    28. Brandt, Michael W. & Kang, Qiang, 2004. "On the relationship between the conditional mean and volatility of stock returns: A latent VAR approach," Journal of Financial Economics, Elsevier, vol. 72(2), pages 217-257, May.
    29. Gallant, Ronald & Tauchen, George, 1989. "Seminonparametric Estimation of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Econometrica, Econometric Society, vol. 57(5), pages 1091-1120, September.
    30. Griffin, J. E. & Steel, M. F. J., 2004. "Semiparametric Bayesian inference for stochastic frontier models," Journal of Econometrics, Elsevier, vol. 123(1), pages 121-152, November.
    31. Schwert, G William, 1990. "Indexes of U.S. Stock Prices from 1802 to 1987," The Journal of Business, University of Chicago Press, vol. 63(3), pages 399-426, July.
    32. Wu, Guojun, 2001. "The Determinants of Asymmetric Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 14(3), pages 837-859.
    33. Paul Harrison & Harold H. Zhang, 1999. "An Investigation Of The Risk And Return Relation At Long Horizons," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 399-408, August.
    34. Kim, Chang-Jin & Morley, James C & Nelson, Charles R, 2004. "Is There a Positive Relationship between Stock Market Volatility and the Equity Premium?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(3), pages 339-360, June.
    35. Tim Bollerslev & Julia Litvinova & George Tauchen, 2006. "Leverage and Volatility Feedback Effects in High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 4(3), pages 353-384.
    36. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    37. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    38. Conley, Timothy G. & Hansen, Christian B. & McCulloch, Robert E. & Rossi, Peter E., 2008. "A semi-parametric Bayesian approach to the instrumental variable problem," Journal of Econometrics, Elsevier, vol. 144(1), pages 276-305, May.
    39. Veronesi, Pietro, 1999. "Stock Market Overreaction to Bad News in Good Times: A Rational Expectations Equilibrium Model," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 975-1007.
    40. Chib, Siddhartha & Hamilton, Barton H., 2002. "Semiparametric Bayes analysis of longitudinal data treatment models," Journal of Econometrics, Elsevier, vol. 110(1), pages 67-89, September.
    41. Abel Rodríguez & David B. Dunson & Alan E. Gelfand, 2009. "Bayesian nonparametric functional data analysis through density estimation," Biometrika, Biometrika Trust, vol. 96(1), pages 149-162.
    42. Bandi, Federico M. & Perron, Benoît, 2008. "Long-run risk-return trade-offs," Journal of Econometrics, Elsevier, vol. 143(2), pages 349-374, April.
    43. Kim, Chang-Jin & Morley, James C. & Nelson, Charles R., 2005. "The Structural Break in the Equity Premium," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 181-191, April.
    44. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    45. Taddy, Matthew A. & Kottas, Athanasios, 2010. "A Bayesian Nonparametric Approach to Inference for Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 357-369.
    46. Lundblad, Christian, 2007. "The risk return tradeoff in the long run: 1836-2003," Journal of Financial Economics, Elsevier, vol. 85(1), pages 123-150, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Donelli, Nicola & Peluso, Stefano & Mira, Antonietta, 2021. "A Bayesian semiparametric vector Multiplicative Error Model," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    2. Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2017. "Inference on Self‐Exciting Jumps in Prices and Volatility Using High‐Frequency Measures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 504-532, April.
    3. Wu, Ji & Guo, Mengmeng & Chen, Minghua & Jeon, Bang Nam, 2019. "Market power and risk-taking of banks: Some semiparametric evidence from emerging economies," Emerging Markets Review, Elsevier, vol. 41(C).
    4. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    5. Thanasis Stengos, 2019. "Nonparametric Econometric Methods and Applications," JRFM, MDPI, vol. 12(4), pages 1-3, November.
    6. Miriam Hägele & Jaakko Lehtomaa, 2021. "Large Deviations for a Class of Multivariate Heavy-Tailed Risk Processes Used in Insurance and Finance," JRFM, MDPI, vol. 14(5), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turan Bali & Kamil Yilmaz, 2009. "The Intertemporal Relation between Expected Return and Risk on Currency," Koç University-TUSIAD Economic Research Forum Working Papers 0909, Koc University-TUSIAD Economic Research Forum, revised Nov 2009.
    2. Wang, Wenzhao & Duxbury, Darren, 2021. "Institutional investor sentiment and the mean-variance relationship: Global evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 415-441.
    3. Symitsi, Efthymia & Symeonidis, Lazaros & Kourtis, Apostolos & Markellos, Raphael, 2018. "Covariance forecasting in equity markets," Journal of Banking & Finance, Elsevier, vol. 96(C), pages 153-168.
    4. Wang, Wenzhao, 2018. "Investor sentiment and the mean-variance relationship: European evidence," Research in International Business and Finance, Elsevier, vol. 46(C), pages 227-239.
    5. Anisha Ghosh & Oliver Linton, 2019. "Estimation with Mixed Data Frequencies: A Bias-Correction Approach," CeMMAP working papers CWP65/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    7. Bollerslev, Tim & Zhou, Hao, 2006. "Volatility puzzles: a simple framework for gauging return-volatility regressions," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 123-150.
    8. Calvet, Laurent E. & Fisher, Adlai J., 2007. "Multifrequency news and stock returns," Journal of Financial Economics, Elsevier, vol. 86(1), pages 178-212, October.
    9. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.
    10. Sévi, Benoît, 2013. "An empirical analysis of the downside risk-return trade-off at daily frequency," Economic Modelling, Elsevier, vol. 31(C), pages 189-197.
    11. Ľuboš Pástor & Meenakshi Sinha & Bhaskaran Swaminathan, 2008. "Estimating the Intertemporal Risk–Return Tradeoff Using the Implied Cost of Capital," Journal of Finance, American Finance Association, vol. 63(6), pages 2859-2897, December.
    12. Bandi, Federico M. & Perron, Benoît, 2008. "Long-run risk-return trade-offs," Journal of Econometrics, Elsevier, vol. 143(2), pages 349-374, April.
    13. Ghosh, Anisha & Linton, Oliver, 2023. "Estimation with mixed data frequencies: A bias-correction approach," Journal of Empirical Finance, Elsevier, vol. 74(C).
    14. Chang, Kuang-Liang, 2016. "Does the return-state-varying relationship between risk and return matter in modeling the time series process of stock return?," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 72-87.
    15. Bali, Turan G. & Cakici, Nusret & Chabi-Yo, Fousseni, 2015. "A new approach to measuring riskiness in the equity market: Implications for the risk premium," Journal of Banking & Finance, Elsevier, vol. 57(C), pages 101-117.
    16. Lee Jihyun & Kim Tong S & Lee Hoe Kyung, 2010. "Return-Volatility Relationship in High Frequency Data: Multiscale Horizon Dependency," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(1), pages 1-43, December.
    17. Cenesizoglu, Tolga, 2022. "Return decomposition over the business cycle," Journal of Banking & Finance, Elsevier, vol. 143(C).
    18. Tan, Zhengxun & Xiao, Binuo & Huang, Yilong & Zhou, Li, 2021. "Value at risk and return in Chinese and the US stock markets: Double long memory and fractional cointegration," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    19. Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    20. Thomas C. Chiang & Jiandong Li, 2012. "Stock Returns and Risk: Evidence from Quantile," JRFM, MDPI, vol. 5(1), pages 1-39, December.

    More about this item

    Keywords

    dependent Bayesian nonparametrics; Dirichlet process prior; slice sampling;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:11:y:2018:i:3:p:52-:d:167993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.