[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v56y2021ics1062940821000115.html
   My bibliography  Save this article

Value at risk and return in Chinese and the US stock markets: Double long memory and fractional cointegration

Author

Listed:
  • Tan, Zhengxun
  • Xiao, Binuo
  • Huang, Yilong
  • Zhou, Li
Abstract
Given that the United States is an engine of global stock market while China is the largest emerging market with a cornucopia of anomalies in particular, it is vital to investigate the risk-return relationship in the two markets. This paper brings new insights not only into risk-return tradeoff, but also to the leverage effect, with the application of the fractionally co-integrated vector auto-regression (FCVAR) model capturing the fractional cointegrated relationship and long memory property. Results show that China stock markets own the property of double long memory but the US markets don’t. Most of all, in the US market, a positive risk-return tradeoff exists for the whole sample while after the crisis, even we find the negative relation, it’s not a volatility feedback effect but low risk and high returns. However, there is only a volatility feedback effect in China stock markets. Besides, there is a leverage effect in the US market, while Chinese market exhibits a reverse one, another anomaly, indicating significant difference in the two markets again.

Suggested Citation

  • Tan, Zhengxun & Xiao, Binuo & Huang, Yilong & Zhou, Li, 2021. "Value at risk and return in Chinese and the US stock markets: Double long memory and fractional cointegration," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
  • Handle: RePEc:eee:ecofin:v:56:y:2021:i:c:s1062940821000115
    DOI: 10.1016/j.najef.2021.101371
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940821000115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2021.101371?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    2. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    3. Yiguo Sun & Ximing Wu, 2018. "Leverage and Volatility Feedback Effects and Conditional Dependence Index: A Nonparametric Study," JRFM, MDPI, vol. 11(2), pages 1-20, June.
    4. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    5. Morana, Claudio & Beltratti, Andrea, 2004. "Structural change and long-range dependence in volatility of exchange rates: either, neither or both?," Journal of Empirical Finance, Elsevier, vol. 11(5), pages 629-658, December.
    6. Nyberg, Henri, 2012. "Risk-Return Tradeoff in U.S. Stock Returns over the Business Cycle," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 47(1), pages 137-158, February.
    7. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    8. Bent Jesper Christensen & Morten Ørregaard Nielsen, 2007. "The Effect of Long Memory in Volatility on Stock Market Fluctuations," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 684-700, November.
    9. Tim Bollerslev & George Tauchen & Hao Zhou, 2009. "Expected Stock Returns and Variance Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4463-4492, November.
    10. Paul Harrison & Harold H. Zhang, 1999. "An Investigation Of The Risk And Return Relation At Long Horizons," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 399-408, August.
    11. Choi, Kyongwook & Yu, Wei-Choun & Zivot, Eric, 2010. "Long memory versus structural breaks in modeling and forecasting realized volatility," Journal of International Money and Finance, Elsevier, vol. 29(5), pages 857-875, September.
    12. Hui Guo & Robert F. Whitelaw, 2006. "Uncovering the Risk–Return Relation in the Stock Market," Journal of Finance, American Finance Association, vol. 61(3), pages 1433-1463, June.
    13. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    14. Bandi, Federico M. & Renò, Roberto, 2012. "Time-varying leverage effects," Journal of Econometrics, Elsevier, vol. 169(1), pages 94-113.
    15. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
    16. Pierre Perron & Zhongjun Qu, 2006. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts and its Implications for Stock Returns Volatility," Boston University - Department of Economics - Working Papers Series WP2006-016, Boston University - Department of Economics.
    17. Scott Mayfield, E., 2004. "Estimating the market risk premium," Journal of Financial Economics, Elsevier, vol. 73(3), pages 465-496, September.
    18. Katsumi Shimotsu, 2006. "Simple (but Effective) Tests Of Long Memory Versus Structural Breaks," Working Paper 1101, Economics Department, Queen's University.
    19. Thomas C. Chiang, 2019. "Financial risk, uncertainty and expected returns: evidence from Chinese equity markets," China Finance Review International, Emerald Group Publishing Limited, vol. 9(4), pages 425-454, July.
    20. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    21. repec:bla:jfinan:v:53:y:1998:i:2:p:575-603 is not listed on IDEAS
    22. John Y. Campbell & John Cochrane, 1999. "Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," Journal of Political Economy, University of Chicago Press, vol. 107(2), pages 205-251, April.
    23. Chou, Ray Yeutien, 1988. "Volatility Persistence and Stock Valuations: Some Empirical Evidence Using Garch," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 3(4), pages 279-294, October-D.
    24. Han, Xing & Li, Youwei, 2017. "Can investor sentiment be a momentum time-series predictor? Evidence from China," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 212-239.
    25. Yang, Chunpeng & Zhou, Liyun, 2016. "Individual stock crowded trades, individual stock investor sentiment and excess returns," The North American Journal of Economics and Finance, Elsevier, vol. 38(C), pages 39-53.
    26. Mr. Jun Nagayasu, 2003. "The Efficiency of the Japanese Equity Market," IMF Working Papers 2003/142, International Monetary Fund.
    27. Nicholas Barberis & Ming Huang, 2008. "Stocks as Lotteries: The Implications of Probability Weighting for Security Prices," American Economic Review, American Economic Association, vol. 98(5), pages 2066-2100, December.
    28. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    29. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    30. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    31. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    32. Arouri, Mohamed El Hedi & Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong, 2012. "Long memory and structural breaks in modeling the return and volatility dynamics of precious metals," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(2), pages 207-218.
    33. Qu, Zhongjun, 2011. "A Test Against Spurious Long Memory," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 423-438.
    34. Tan, Zhengxun & Huang, Yilong & Xiao, Binuo, 2021. "Value at risk and returns of cryptocurrencies before and after the crash: long-run relations and fractional cointegration," Research in International Business and Finance, Elsevier, vol. 56(C).
    35. Chen, Cathy Yi-Hsuan & Chiang, Thomas C. & Härdle, Wolfgang Karl, 2018. "Downside risk and stock returns in the G7 countries: An empirical analysis of their long-run and short-run dynamics," Journal of Banking & Finance, Elsevier, vol. 93(C), pages 21-32.
    36. Bin Gao & Chunpeng Yang, 2018. "Investor Trading Behavior and Sentiment in Futures Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(3), pages 707-720, February.
    37. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    38. Song Xi Chen, 2005. "Nonparametric Inference of Value-at-Risk for Dependent Financial Returns," Journal of Financial Econometrics, Oxford University Press, vol. 3(2), pages 227-255.
    39. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    40. Eunju Hwang & Dong Wan Shin, 2018. "Tests for structural breaks in memory parameters of long-memory heterogeneous autoregressive models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(21), pages 5378-5389, November.
    41. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Post-Print hal-00413729, HAL.
    42. Lin Peng & Turan G. Bali, 2006. "Is there a risk-return trade-off? Evidence from high-frequency data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1169-1198.
    43. Baillie, Richard T. & Morana, Claudio, 2009. "Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
    44. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    45. Xiaofeng Shao, 2011. "A simple test of changes in mean in the possible presence of long‐range dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(6), pages 598-606, November.
    46. Uwe Hassler & Barbara Meller, 2014. "Detecting multiple breaks in long memory the case of U.S. inflation," Empirical Economics, Springer, vol. 46(2), pages 653-680, March.
    47. Jaeun Shin, 2005. "Stock Returns and Volatility in Emerging Stock Markets," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 4(1), pages 31-43, April.
    48. Guo, Hui & Savickas, Robert & Wang, Zijun & Yang, Jian, 2009. "Is the Value Premium a Proxy for Time-Varying Investment Opportunities? Some Time-Series Evidence," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(1), pages 133-154, February.
    49. Ruiz, Esther, 1994. "Quasi-maximum likelihood estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 63(1), pages 289-306, July.
    50. Jia, Yun & Yang, Chunpeng, 2017. "Disagreement and the risk-return relation," Economic Modelling, Elsevier, vol. 64(C), pages 97-104.
    51. Bandi, Federico M. & Perron, Benoît, 2008. "Long-run risk-return trade-offs," Journal of Econometrics, Elsevier, vol. 143(2), pages 349-374, April.
    52. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    53. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    54. Jacobs, Heiko, 2016. "Market maturity and mispricing," Journal of Financial Economics, Elsevier, vol. 122(2), pages 270-287.
    55. Chiang, Thomas C & Doong, Shuh-Chyi, 2001. "Empirical Analysis of Stock Returns and Volatility: Evidence from Seven Asian Stock Markets Based on TAR-GARCH Model," Review of Quantitative Finance and Accounting, Springer, vol. 17(3), pages 301-318, November.
    56. Chiang, Thomas C., 2019. "Economic policy uncertainty, risk and stock returns: Evidence from G7 stock markets," Finance Research Letters, Elsevier, vol. 29(C), pages 41-49.
    57. Lee Jihyun & Kim Tong S & Lee Hoe Kyung, 2010. "Return-Volatility Relationship in High Frequency Data: Multiscale Horizon Dependency," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(1), pages 1-43, December.
    58. Kasman, Adnan & Kasman, Saadet & Torun, Erdost, 2009. "Dual long memory property in returns and volatility: Evidence from the CEE countries' stock markets," Emerging Markets Review, Elsevier, vol. 10(2), pages 122-139, June.
    59. Cathy Yi†Hsuan Chen & Thomas C. Chiang, 2016. "Empirical Analysis of the Intertemporal Relationship between Downside Risk and Expected Returns: Evidence from Time†varying Transition Probability Models," European Financial Management, European Financial Management Association, vol. 22(5), pages 749-796, November.
    60. Scott Cederburg & Michael S. O’Doherty, 2019. "Understanding the Risk-Return Relation: The Aggregate Wealth Proxy Actually Matters," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 721-735, October.
    61. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    62. Turan G. Bali & Lin Peng, 2006. "Is there a risk–return trade‐off? Evidence from high‐frequency data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1169-1198, December.
    63. Sei‐Wan Kim & Bong‐Soo Lee, 2008. "Stock Returns, Asymmetric Volatility, Risk Aversion, And Business Cycle: Some New Evidence," Economic Inquiry, Western Economic Association International, vol. 46(2), pages 131-148, April.
    64. Lettau, Martin & Ludvigson, Sydney, 2001. "Measuring and Modelling Variation in the Risk-Return Trade-off," CEPR Discussion Papers 3105, C.E.P.R. Discussion Papers.
    65. Mert URAL & C. Coskun KUCUKOZMEN, 2011. "Analyzing the Dual Long Memory in Stock Market Returns," Ege Academic Review, Ege University Faculty of Economics and Administrative Sciences, vol. 11(Special I), pages 19-28.
    66. Wu, Yanran & Liu, Tingting & Han, Liyan & Yin, Libo, 2018. "Optimistic bias of analysts' earnings forecasts: Does investor sentiment matter in China?," Pacific-Basin Finance Journal, Elsevier, vol. 49(C), pages 147-163.
    67. Pyun, Sungjune, 2019. "Variance risk in aggregate stock returns and time-varying return predictability," Journal of Financial Economics, Elsevier, vol. 132(1), pages 150-174.
    68. Lundblad, Christian, 2007. "The risk return tradeoff in the long run: 1836-2003," Journal of Financial Economics, Elsevier, vol. 85(1), pages 123-150, July.
    69. Long, Huaigang & Zhu, Yanjian & Chen, Lifang & Jiang, Yuexiang, 2019. "Tail risk and expected stock returns around the world," Pacific-Basin Finance Journal, Elsevier, vol. 56(C), pages 162-178.
    70. Kinnunen, Jyri, 2014. "Risk-return trade-off and serial correlation: Do volume and volatility matter?," Journal of Financial Markets, Elsevier, vol. 20(C), pages 1-19.
    71. Duffee, Gregory R., 1995. "Stock returns and volatility A firm-level analysis," Journal of Financial Economics, Elsevier, vol. 37(3), pages 399-420, March.
    72. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    73. Alberto G. Rossi & Allan Timmermann, 2015. "Modeling Covariance Risk in Merton's ICAPM," The Review of Financial Studies, Society for Financial Studies, vol. 28(5), pages 1428-1461.
    74. Hyung, N. & Franses, Ph.H.B.F., 2002. "Inflation rates; long-memoray, level shifts, or both?," Econometric Institute Research Papers EI 2002-08, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    75. Brandt, Michael W. & Kang, Qiang, 2004. "On the relationship between the conditional mean and volatility of stock returns: A latent VAR approach," Journal of Financial Economics, Elsevier, vol. 72(2), pages 217-257, May.
    76. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    77. Enrique Salvador, 2012. "The Risk-Return Trade-Off in Emerging Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(6), pages 106-128, November.
    78. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 231-252, Spring.
    79. Niklas Karlsson & George Loewenstein & Duane Seppi, 2009. "The ostrich effect: Selective attention to information," Journal of Risk and Uncertainty, Springer, vol. 38(2), pages 95-115, April.
    80. Chen, Shiu-Sheng, 2011. "Lack of consumer confidence and stock returns," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 225-236, March.
    81. Ning, Cathy & Xu, Dinghai & Wirjanto, Tony S., 2008. "Modeling the leverage effect with copulas and realized volatility," Finance Research Letters, Elsevier, vol. 5(4), pages 221-227, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emre BULUT & Ahmed İhsan ŞİMŞEK, 2023. "The Relationship Between the Stock Market Volatility, Liquidity, Exchange Rate Return, and Stock Return During the COVID-19 Period: The case of the BIST 100 Index," Bingol University Journal of Economics and Administrative Sciences, Bingol University, Faculty of Economics and Administrative Sciences, vol. 7(1), pages 121-135, June.
    2. Yusuf Olatunji Oyedeko & Olusola Segun Kolawole & Isah Ibrahim & Olena Zharikova, 2023. "Risk-Return Relationship in the Nigerian Stock Market: Comparative between Fama-French Five-Factor Model and Higher Moment Fama-French Five-Factor Model," Oblik i finansi, Institute of Accounting and Finance, issue 1, pages 68-78, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee Jihyun & Kim Tong S & Lee Hoe Kyung, 2010. "Return-Volatility Relationship in High Frequency Data: Multiscale Horizon Dependency," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(1), pages 1-43, December.
    2. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    3. Chen, Cathy Yi-Hsuan & Chiang, Thomas C. & Härdle, Wolfgang Karl, 2018. "Downside risk and stock returns in the G7 countries: An empirical analysis of their long-run and short-run dynamics," Journal of Banking & Finance, Elsevier, vol. 93(C), pages 21-32.
    4. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    5. Chang, Kuang-Liang, 2016. "Does the return-state-varying relationship between risk and return matter in modeling the time series process of stock return?," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 72-87.
    6. Kim, Eung-Bin & Byun, Suk-Joon, 2021. "Risk, ambiguity, and equity premium: International evidence," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 321-335.
    7. Bent Jesper Christensen & Morten Ørregaard Nielsen, 2007. "The Effect of Long Memory in Volatility on Stock Market Fluctuations," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 684-700, November.
    8. Cotter, John & Salvador, Enrique, 2022. "The non-linear trade-off between return and risk and its determinants," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 100-132.
    9. Al-Shboul, Mohammad & Anwar, Sajid, 2016. "Fractional integration in daily stock market indices at Jordan's Amman stock exchange," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 16-37.
    10. John Cotter & Enrique Salvador, 2014. "The non-linear trade-off between return and risk: a regime-switching multi-factor framework," Working Papers 201414, Geary Institute, University College Dublin.
    11. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    12. Salvador, Enrique & Floros, Christos & Arago, Vicent, 2014. "Re-examining the risk–return relationship in Europe: Linear or non-linear trade-off?," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 60-77.
    13. Chen, Cathy Yi-Hsuan & Chiang, Thomas C. & Härdle, Wolfgang Karl, 2016. "Downside risk and stock returns: An empirical analysis of the long-run and short-run dynamics from the G-7 Countries," SFB 649 Discussion Papers 2016-001, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    14. Wang, Wenzhao, 2018. "Investor sentiment and the mean-variance relationship: European evidence," Research in International Business and Finance, Elsevier, vol. 46(C), pages 227-239.
    15. Wang, Zijun & Khan, M. Moosa, 2017. "Market states and the risk-return tradeoff," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 314-327.
    16. Chiang, Thomas C., 2019. "Empirical analysis of intertemporal relations between downside risks and expected returns—Evidence from Asian markets," Research in International Business and Finance, Elsevier, vol. 47(C), pages 264-278.
    17. Thomas C. Chiang & Jiandong Li, 2012. "Stock Returns and Risk: Evidence from Quantile," JRFM, MDPI, vol. 5(1), pages 1-39, December.
    18. Wang, Wenzhao & Duxbury, Darren, 2021. "Institutional investor sentiment and the mean-variance relationship: Global evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 415-441.
    19. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
    20. repec:hum:wpaper:sfb649dp2016-001 is not listed on IDEAS
    21. Aloui, Chaker & Hamida, Hela ben, 2014. "Modelling and forecasting value at risk and expected shortfall for GCC stock markets: Do long memory, structural breaks, asymmetry, and fat-tails matter?," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 349-380.

    More about this item

    Keywords

    Risk-return relation; Fractional cointegration; Double long memory; Stock markets;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:56:y:2021:i:c:s1062940821000115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.