[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i5p2620-d511362.html
   My bibliography  Save this article

Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme

Author

Listed:
  • Zhangsheng Liu

    (College of City Construction, Jiangxi Normal University, Nanchang 330022, China)

  • Liuqingqing Yang

    (Economics School, Zhongnan University of Economics and Law, Wuhan 430073, China)

  • Liqin Fan

    (School of Economics and business, Xinjiang Agricultural University, Urumqi 830052, China)

Abstract
With increasing constraints on resources and the environment, it is of great practical importance to discover and utilize the induced effect of green technology through market-based tools, in order to simultaneously realize economic development and ecological sustainability. Based on unique patent data from 1999 to 2013, this paper examines the induced effect of China’s increasing-block electricity pricing scheme (IBP) on energy-efficient patents and checks whether the effect is neutral or biased. Furthermore, the quality of the induced patents is identified. The results reveal that increased green innovation is strongly related to the IBP scheme. In addition, the induced effect is biased towards green technology such that, apart from autonomous technological advances, the biased effect of IBP induced two more energy-efficient patents per hundred technological patents. However, the quality of the induced innovation is relatively low: compared to high-quality inventions, low-quality utility models showed greater and more significant growth due to the IBP. Our paper provides quantitative insight into the impact of the IBP and indicates that a reasonable pricing scheme can benefit both the environment and the economy.

Suggested Citation

  • Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:5:p:2620-:d:511362
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/5/2620/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/5/2620/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lionel Nesta & Francesco Vona & Francesco Nicolli, 2012. "Environmental Policies, Product Market Regulation and Innovation in Renewable Energy," Working Papers 2012.90, Fondazione Eni Enrico Mattei.
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Stefan Ambec & Mark A. Cohen & Stewart Elgie & Paul Lanoie, 2013. "The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(1), pages 2-22, January.
    4. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    5. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    6. Rubashkina, Yana & Galeotti, Marzio & Verdolini, Elena, 2015. "Environmental regulation and competitiveness: Empirical evidence on the Porter Hypothesis from European manufacturing sectors," Energy Policy, Elsevier, vol. 83(C), pages 288-300.
    7. Thi Hong Van Hoang & Justyna Przychodzen & Wojciech Przychodzen & Elysé Segbotangni, 2020. "Does it pay to be green? A disaggregated analysis of US firms with green patents," Post-Print hal-02518497, HAL.
    8. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    9. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    10. Hoynes, Hilary & Page, Marianne & Stevens, Ann Huff, 2011. "Can targeted transfers improve birth outcomes?: Evidence from the introduction of the WIC program," Journal of Public Economics, Elsevier, vol. 95(7-8), pages 813-827, August.
    11. Rong, Zhao & Wu, Xiaokai & Boeing, Philipp, 2017. "The effect of institutional ownership on firm innovation: Evidence from Chinese listed firms," Research Policy, Elsevier, vol. 46(9), pages 1533-1551.
    12. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    13. Thorsten Beck & Ross Levine & Alexey Levkov, 2010. "Big Bad Banks? The Winners and Losers from Bank Deregulation in the United States," Journal of Finance, American Finance Association, vol. 65(5), pages 1637-1667, October.
    14. Brouillat, Eric & Oltra, Vanessa, 2012. "Extended producer responsibility instruments and innovation in eco-design: An exploration through a simulation model," Ecological Economics, Elsevier, vol. 83(C), pages 236-245.
    15. Paul Lanoie & Jérémy Laurent‐Lucchetti & Nick Johnstone & Stefan Ambec, 2011. "Environmental Policy, Innovation and Performance: New Insights on the Porter Hypothesis," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 20(3), pages 803-842, September.
    16. Popp, David & Newell, Richard, 2012. "Where does energy R&D come from? Examining crowding out from energy R&D," Energy Economics, Elsevier, vol. 34(4), pages 980-991.
    17. Hoynes, Hilary & Page, Marianne & Stevens, Ann Huff, 2011. "Can targeted transfers improve birth outcomes?," Journal of Public Economics, Elsevier, vol. 95(7), pages 813-827.
    18. Hu, Albert Guangzhou & Jefferson, Gary H., 2009. "A great wall of patents: What is behind China's recent patent explosion?," Journal of Development Economics, Elsevier, vol. 90(1), pages 57-68, September.
    19. Jing Cai, 2016. "The Impact of Insurance Provision on Household Production and Financial Decisions," American Economic Journal: Economic Policy, American Economic Association, vol. 8(2), pages 44-88, May.
    20. Popp, David C., 2001. "The effect of new technology on energy consumption," Resource and Energy Economics, Elsevier, vol. 23(3), pages 215-239, July.
    21. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 941-975.
    22. Chen, Zhiyuan & Zhang, Jie, 2019. "Types of patents and driving forces behind the patent growth in China," Economic Modelling, Elsevier, vol. 80(C), pages 294-302.
    23. Hu, Albert G.Z. & Zhang, Peng & Zhao, Lijing, 2017. "China as number one? Evidence from China's most recent patenting surge," Journal of Development Economics, Elsevier, vol. 124(C), pages 107-119.
    24. Hung, Ming-Feng & Chie, Bin-Tzong, 2017. "The long-run performance of increasing-block pricing in Taiwan's residential electricity sector," Energy Policy, Elsevier, vol. 109(C), pages 782-793.
    25. Masayuki Kudamatsu, 2012. "Has Democratization Reduced Infant Mortality In Sub-Saharan Africa? Evidence From Micro Data," Journal of the European Economic Association, European Economic Association, vol. 10(6), pages 1294-1317, December.
    26. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    27. Thi‐Hong‐Van Hoang & Wojciech Przychodzen & Justyna Przychodzen & Elysé A. Segbotangni, 2020. "Does it pay to be green? A disaggregated analysis of U.S. firms with green patents," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 1331-1361, March.
    28. Chen Feng & Beibei Shi & Rong Kang, 2017. "Does Environmental Policy Reduce Enterprise Innovation?—Evidence from China," Sustainability, MDPI, vol. 9(6), pages 1-24, May.
    29. Richard G. Newell, 2010. "The role of markets and policies in delivering innovation for climate change mitigation," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 26(2), pages 253-269, Summer.
    30. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    31. Mads Greaker & Tom-Reiel Heggedal, 2012. "A Comment on the Environment and Directed Technical Change," Discussion Papers 713, Statistics Norway, Research Department.
    32. Sumit Agarwal & Wenlan Qian, 2014. "Consumption and Debt Response to Unanticipated Income Shocks: Evidence from a Natural Experiment in Singapore," American Economic Review, American Economic Association, vol. 104(12), pages 4205-4230, December.
    33. Adam Jaffe & Richard Newell & Robert Stavins, 2002. "Environmental Policy and Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 41-70, June.
    34. Juan Tang & Shihu Zhong & Guocheng Xiang, 2019. "Environmental Regulation, Directed Technical Change, and Economic Growth: Theoretic Model and Evidence from China," International Regional Science Review, , vol. 42(5-6), pages 519-549, September.
    35. Christainsen, Gregory B & Haveman, Robert H, 1981. "Public Regulations and the Slowdown in Productivity Growth," American Economic Review, American Economic Association, vol. 71(2), pages 320-325, May.
    36. Apergis, Nicholas & Gangopadhyay, Partha, 2020. "The asymmetric relationships between pollution, energy use and oil prices in Vietnam: Some behavioural implications for energy policy-making," Energy Policy, Elsevier, vol. 140(C).
    37. Doran, Justin & Ryan, Geraldine, 2012. "Regulation and Firm Perception, Eco-Innovation and Firm Performance," MPRA Paper 44578, University Library of Munich, Germany.
    38. Song, Malin & Wang, Shuhong & Sun, Jing, 2018. "Environmental regulations, staff quality, green technology, R&D efficiency, and profit in manufacturing," Technological Forecasting and Social Change, Elsevier, vol. 133(C), pages 1-14.
    39. Yingyuan Guo & Xingneng Xia & Sheng Zhang & Danping Zhang, 2018. "Environmental Regulation, Government R&D Funding and Green Technology Innovation: Evidence from China Provincial Data," Sustainability, MDPI, vol. 10(4), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengchao Yao & Ziqi Li & Yunfei Wang, 2023. "Features of Industrial Green Technology Innovation in the Yangtze River Economic Belt of China Based on Spatial Correlation Network," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    2. Tao Li & Lei Ma & Zheng Liu & Chaonan Yi & Kaitong Liang, 2023. "Dual Carbon Goal-Based Quadrilateral Evolutionary Game: Study on the New Energy Vehicle Industry in China," IJERPH, MDPI, vol. 20(4), pages 1-16, February.
    3. Ruomeng Zhou & Yunsheng Zhang & Xincai Gao, 2021. "The Spatial Interaction Effect of Environmental Regulation on Urban Innovation Capacity: Empirical Evidence from China," IJERPH, MDPI, vol. 18(9), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Jiangfeng & Pan, Xinxin & Huang, Qinghua, 2020. "Quantity or quality? The impacts of environmental regulation on firms’ innovation–Quasi-natural experiment based on China's carbon emissions trading pilot," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    2. Cameron Hepburn & Jacquelyn Pless & David Popp, 2018. "Policy Brief—Encouraging Innovation that Protects Environmental Systems: Five Policy Proposals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 154-169.
    3. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    4. Li, Kai & Yan, Yaxue & Zhang, Xiaoling, 2021. "Carbon-abatement policies, investment preferences, and directed technological change: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    5. Lazkano, Itziar & Nøstbakken, Linda & Pelli, Martino, 2017. "From fossil fuels to renewables: The role of electricity storage," European Economic Review, Elsevier, vol. 99(C), pages 113-129.
    6. Lazkano, Itziar & Pham, Linh, 2016. "Do Fossil fuel Taxes Promote Innovation in Renewable Electricity Generation?," Discussion Paper Series in Economics 16/2016, Norwegian School of Economics, Department of Economics.
    7. Li, Kai & Qi, Shouzhou & Shi, Xunpeng, 2023. "Environmental policies and low-carbon industrial upgrading: Heterogenous effects among policies, sectors, and technologies in China," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    8. Rexhäuser, Sascha & Löschel, Andreas, 2015. "Invention in energy technologies: Comparing energy efficiency and renewable energy inventions at the firm level," Energy Policy, Elsevier, vol. 83(C), pages 206-217.
    9. Hille, Erik & Althammer, Wilhelm & Diederich, Henning, 2020. "Environmental regulation and innovation in renewable energy technologies: Does the policy instrument matter?," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    10. Patricia Laurens & Christian Le Bas & Stéphane Lhuillery & Antoine Schoen, 2017. "The determinants of cleaner energy innovations of the world’s largest firms: the impact of firm learning and knowledge capital," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 26(4), pages 311-333, May.
    11. Takahiko Kiso, 2019. "Environmental Policy and Induced Technological Change: Evidence from Automobile Fuel Economy Regulations," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 785-810, October.
    12. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    13. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2023. "Green technologies, interdependencies, and policy," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    14. Nicolli, Francesco & Vona, Francesco, 2016. "Heterogeneous policies, heterogeneous technologies: The case of renewable energy," Energy Economics, Elsevier, vol. 56(C), pages 190-204.
    15. Óscar Afonso & Liliana Fonseca & Manuela Magalhães & Paulo B. Vasconcelos, 2021. "Directed technical change and environmental quality," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 20(1), pages 71-97, January.
    16. Raphael Calel, 2020. "Adopt or Innovate: Understanding Technological Responses to Cap-and-Trade," American Economic Journal: Economic Policy, American Economic Association, vol. 12(3), pages 170-201, August.
    17. Nicolo Barbieri & Alberto Marzucchi & Ugo Rizzo, 2021. "Green technologies, complementarities, and policy," SPRU Working Paper Series 2021-08, SPRU - Science Policy Research Unit, University of Sussex Business School.
    18. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    19. Giovanni Marin & Francesca Lotti, 2017. "Productivity effects of eco-innovations using data on eco-patents," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(1), pages 125-148.
    20. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:5:p:2620-:d:511362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.