[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-01496920.html
   My bibliography  Save this paper

Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry

Author

Listed:
  • Philippe Aghion

    (PSE - Paris-Jourdan Sciences Economiques - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - INRA - Institut National de la Recherche Agronomique - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CIFAR - Canadian Institute for Advanced Research, Department of Economics, Harvard University, Collège de France - Chaire Economie des institutions, de l'innovation et de la croissance - CdF (institution) - Collège de France)

  • Antoine Dechezleprêtre

    (CEP - LSE - Centre for Economic Performance - LSE - London School of Economics and Political Science, Grantham Research Institute on Climate Change and the Environment - LSE - London School of Economics and Political Science)

  • David Hémous

    (INSEAD - Institut Européen d'administration des Affaires)

  • Ralf Martin

    (Imperial College London, Grantham Research Institute on Climate Change and the Environment - LSE - London School of Economics and Political Science, CEP - LSE - Centre for Economic Performance - LSE - London School of Economics and Political Science)

  • John van Reenen

    (NBER - National Bureau of Economic Research [New York] - NBER - The National Bureau of Economic Research, CEP - LSE - Centre for Economic Performance - LSE - London School of Economics and Political Science)

Abstract
Can directed technical change be used to combat climate change? We construct new firm-level panel data on auto industry innovation distinguishing between "dirty" (internal combustion engine) and "clean" (e.g., electric, hybrid, and hydrogen) patents across 80 countries over several decades. We show that firms tend to innovate more in clean (and less in dirty) technologies when they face higher tax-inclusive fuel prices. Furthermore, there is path dependence in the type of innovation (clean/dirty) both from aggregate spillovers and from the firm's own innovation history. We simulate the increases in carbon taxes needed to allow clean technologies to overtake dirty technologies.

Suggested Citation

  • Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Post-Print halshs-01496920, HAL.
  • Handle: RePEc:hal:journl:halshs-01496920
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-01496920
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-01496920/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dominique Guellec & Bruno Van Pottelsberghe de la Potterie, 2004. "From R&D to Productivity Growth: Do the Institutional Settings and the Source of Funds of R&D Matter?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(3), pages 353-378, July.
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Cockburn, Iain & Griliches, Zvi, 1988. "Industry Effects and Appropriability Measures in the Stock Market's Valuation of R&D and Patents," American Economic Review, American Economic Association, vol. 78(2), pages 419-423, May.
    4. Joseph M. Crabb & Daniel K.N. Johnson, 2010. "Fueling Innovation: The Impact of Oil Prices and CAFE Standards on Energy-Efficient Automotive Technology," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 199-216.
    5. Daron Acemoglu & Amy Finkelstein, 2008. "Input and Technology Choices in Regulated Industries: Evidence from the Health Care Sector," Journal of Political Economy, University of Chicago Press, vol. 116(5), pages 837-880, October.
    6. Joshua S. Gans, 2012. "Innovation and Climate Change Policy," American Economic Journal: Economic Policy, American Economic Association, vol. 4(4), pages 125-145, November.
    7. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    8. Martin L. Weitzman, 1974. "Prices vs. Quantities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(4), pages 477-491.
    9. Anderson, Soren T. & Kellogg, Ryan & Sallee, James M., 2013. "What do consumers believe about future gasoline prices?," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 383-403.
    10. Antoine Dechezlepr�tre & Richard Perkins & Eric Neumayer, 2012. "Regulatory distance and the transfer of new environmentally sound technologies: evidence from the automobile sector," GRI Working Papers 73, Grantham Research Institute on Climate Change and the Environment.
    11. von Below, David & Persson, Torsten, 2008. "Uncertainty, Climate Change and the Global Economy," Seminar Papers 757, Stockholm University, Institute for International Economic Studies.
    12. Meghan R. Busse & Christopher R. Knittel & Florian Zettelmeyer, 2013. "Are Consumers Myopic? Evidence from New and Used Car Purchases," American Economic Review, American Economic Association, vol. 103(1), pages 220-256, February.
    13. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, September.
    14. Christopher R. Knittel, 2012. "Reducing Petroleum Consumption from Transportation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 93-118, Winter.
    15. Nicholas Bloom & Mark Schankerman & John Van Reenen, 2013. "Identifying Technology Spillovers and Product Market Rivalry," Econometrica, Econometric Society, vol. 81(4), pages 1347-1393, July.
    16. Blundell, Richard & Griffith, Rachel & Windmeijer, Frank, 2002. "Individual effects and dynamics in count data models," Journal of Econometrics, Elsevier, vol. 108(1), pages 113-131, May.
    17. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    18. Ivan Haščič & Frans de Vries & Nick Johnstone & Neelakshi Medhi, 2009. "Effects of environmental policy on the type of innovation: The case of automotive emission-control technologies," OECD Journal: Economic Studies, OECD Publishing, vol. 2009(1), pages 1-18.
    19. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 577-598.
    20. Rachel Griffith & Sokbae Lee & John Van Reenen, 2011. "Is distance dying at last? Falling home bias in fixed‐effects models of patent citations," Quantitative Economics, Econometric Society, vol. 2(2), pages 211-249, July.
    21. Per Krusell & Conny Olovsson & John Hassler, 2011. "Directed Energy-Saving Technical Change," 2011 Meeting Papers 1055, Society for Economic Dynamics.
    22. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    23. G. M.P. Swann, 2009. "The Economics of Innovation," Books, Edward Elgar Publishing, number 13211.
    24. repec:fth:harver:1473 is not listed on IDEAS
    25. Rebecca Henderson & Adam Jaffe & Manuel Trajtenberg, 2005. "Patent Citations and the Geography of Knowledge Spillovers: A Reassessment: Comment," American Economic Review, American Economic Association, vol. 95(1), pages 461-464, March.
    26. Henderson, Rebecca M. & Newell, Richard G. (ed.), 2011. "Accelerating Energy Innovation," National Bureau of Economic Research Books, University of Chicago Press, number 9780226326832, September.
    27. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    28. repec:bla:jindec:v:46:y:1998:i:4:p:405-32 is not listed on IDEAS
    29. Hunt Allcott & Nathan Wozny, 2014. "Gasoline Prices, Fuel Economy, and the Energy Paradox," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 779-795, December.
    30. Goldberg, Pinelopi Koujianou, 1995. "Product Differentiation and Oligopoly in International Markets: The Case of the U.S. Automobile Industry," Econometrica, Econometric Society, vol. 63(4), pages 891-951, July.
    31. Simon Dietz & Nicholas Stern, 2008. "Why Economic Analysis Supports Strong Action on Climate Change: A Response to the Stern Review's Critics," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(1), pages 94-113, Winter.
    32. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2000. "Protecting Their Intellectual Assets: Appropriability Conditions and Why U.S. Manufacturing Firms Patent (or Not)," NBER Working Papers 7552, National Bureau of Economic Research, Inc.
    33. Grubler, Arnulf & Messner, Sabine, 1998. "Technological change and the timing of mitigation measures," Energy Economics, Elsevier, vol. 20(5-6), pages 495-512, December.
    34. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 179-206.
    35. Yohe, Gary W. & Tol, Richard S. J. & Anthoff, David, 2009. "Discounting for Climate Change," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-22.
    36. Daron Acemoglu & Joshua Linn, 2004. "Market Size in Innovation: Theory and Evidence from the Pharmaceutical Industry," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(3), pages 1049-1090.
    37. Sabine Messner, 1997. "Endogenized technological learning in an energy systems model," Journal of Evolutionary Economics, Springer, vol. 7(3), pages 291-313.
    38. Kenneth A. Small & Kurt van Dender, 2007. "Long Run Trends in Transport Demand, Fuel Price Elasticities and Implications of the Oil Outlook for Transport Policy," OECD/ITF Joint Transport Research Centre Discussion Papers 2007/16, OECD Publishing.
    39. James D. Hamilton, 2009. "Understanding Crude Oil Prices," The Energy Journal, , vol. 30(2), pages 179-206, April.
    40. Catalina Martinez, 2010. "Insight into Different Types of Patent Families," OECD Science, Technology and Industry Working Papers 2010/2, OECD Publishing.
    41. Hassler, John & Olovsson, Conny, 2012. "Energy-Saving Technical Change," CEPR Discussion Papers 9177, C.E.P.R. Discussion Papers.
    42. West, Sarah E., 2004. "Distributional effects of alternative vehicle pollution control policies," Journal of Public Economics, Elsevier, vol. 88(3-4), pages 735-757, March.
    43. Verboven, Frank, 1999. "The Markets for Gasoline and Diesel Cars in Europe," CEPR Discussion Papers 2069, C.E.P.R. Discussion Papers.
    44. Rebecca M. Henderson & Richard G. Newell, 2011. "Accelerating Energy Innovation: Insights from Multiple Sectors," NBER Books, National Bureau of Economic Research, Inc, number hend09-1.
    45. Partha Dasgupta, 2008. "Discounting climate change," Journal of Risk and Uncertainty, Springer, vol. 37(2), pages 141-169, December.
    46. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    47. Hariolf Grupp, 1998. "Foundations of the Economics of Innovation," Books, Edward Elgar Publishing, number 1390.
    48. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 941-975.
    49. Reyer Gerlagh & Snorre Kverndokk & Knut Rosendahl, 2009. "Optimal Timing of Climate Change Policy: Interaction Between Carbon Taxes and Innovation Externalities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 369-390, July.
    50. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    51. Daron Acemoglu, 1998. "Why Do New Technologies Complement Skills? Directed Technical Change and Wage Inequality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1055-1089.
    52. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    53. Arellano, Manuel, 2003. "Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780199245291.
    54. Giovanni Peri, 2005. "Determinants of Knowledge Flows and Their Effect on Innovation," The Review of Economics and Statistics, MIT Press, vol. 87(2), pages 308-322, May.
    55. Blundell, Richard & Griffith, Rachel & Van Reenen, John, 1995. "Dynamic Count Data Models of Technological Innovation," Economic Journal, Royal Economic Society, vol. 105(429), pages 333-344, March.
    56. Soren T. Anderson & Ryan Kellogg & James M. Sallee & Richard T. Curtin, 2011. "Forecasting Gasoline Prices Using Consumer Surveys," American Economic Review, American Economic Association, vol. 101(3), pages 110-114, May.
    57. Bruno Van Pottelsberghe & Herman Denis & Dominique Guellec, 2001. "Using patent counts for cross-country comparisons of technology output," ULB Institutional Repository 2013/6227, ULB -- Universite Libre de Bruxelles.
    58. Rachel Griffith & Sokbae Lee & John Van Reenen, 2008. "Is Distance Dying at Last?," CentrePiece - The magazine for economic performance 240, Centre for Economic Performance, LSE.
    59. van der Zwaan, B. C. C. & Gerlagh, R. & G. & Klaassen & Schrattenholzer, L., 2002. "Endogenous technological change in climate change modelling," Energy Economics, Elsevier, vol. 24(1), pages 1-19, January.
    60. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    61. Cockburn, Iain & Henderson, Rebecca, 1994. "Racing to Invest? The Dynamics of Competition in Ethical Drug Discovery," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 3(3), pages 481-519, Fall.
    62. W. Walker Hanlon, 2015. "Necessity Is the Mother of Invention: Input Supplies and Directed Technical Change," Econometrica, Econometric Society, vol. 83, pages 67-100, January.
    63. Christopher R. Knittel, 2011. "Automobiles on Steroids: Product Attribute Trade-Offs and Technological Progress in the Automobile Sector," American Economic Review, American Economic Association, vol. 101(7), pages 3368-3399, December.
    64. Jean O. Lanjouw & Ariel Pakes & Jonathan Putnam, 1998. "How to Count Patents and Value Intellectual Property: The Uses of Patent Renewal and Application Data," Journal of Industrial Economics, Wiley Blackwell, vol. 46(4), pages 405-432, December.
    65. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    66. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    67. Harhoff, Dietmar & Scherer, Frederic M. & Vopel, Katrin, 2003. "Citations, family size, opposition and the value of patent rights," Research Policy, Elsevier, vol. 32(8), pages 1343-1363, September.
    68. repec:bla:jemstr:v:3:y:1994:i:3:p:481-519:a is not listed on IDEAS
    69. Buonanno, Paolo & Carraro, Carlo & Galeotti, Marzio, 2003. "Endogenous induced technical change and the costs of Kyoto," Resource and Energy Economics, Elsevier, vol. 25(1), pages 11-34, February.
    70. Manne, Alan & Richels, Richard, 2004. "The impact of learning-by-doing on the timing and costs of CO2 abatement," Energy Economics, Elsevier, vol. 26(4), pages 603-619, July.
    71. William D. Nordhaus, 2007. "A Review of the Stern Review on the Economics of Climate Change," Journal of Economic Literature, American Economic Association, vol. 45(3), pages 686-702, September.
    72. Mikhail Golosov & John Hassler & Per Krusell & Aleh Tsyvinski, 2014. "Optimal Taxes on Fossil Fuel in General Equilibrium," Econometrica, Econometric Society, vol. 82(1), pages 41-88, January.
    73. Martin L. Weitzman, 2007. "A Review of the Stern Review on the Economics of Climate Change," Journal of Economic Literature, American Economic Association, vol. 45(3), pages 703-724, September.
    74. Hélène Dernis & Mosahid Khan, 2004. "Triadic Patent Families Methodology," OECD Science, Technology and Industry Working Papers 2004/2, OECD Publishing.
    75. Nicholas Stern, 2008. "The Economics of Climate Change," American Economic Review, American Economic Association, vol. 98(2), pages 1-37, May.
    76. Robert Mendelsohn & Thomas Sterner & U. Martin Persson & John P. Weyant, 2008. "Comments on Simon Dietz and Nicholas Stern's Why Economic Analysis Supports Strong Action on Climate Change: A Response to the Stern Review's Critics," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(2), pages 309-313, Summer.
    77. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    78. Richard Blundell & Rachel Griffith & John van Reenen, 1999. "Market Share, Market Value and Innovation in a Panel of British Manufacturing Firms," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 66(3), pages 529-554.
    79. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    80. Gerlagh, Reyer, 2008. "A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings," Energy Economics, Elsevier, vol. 30(2), pages 425-448, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rik L. Rozendaal & Herman R. J. Vollebergh, 2021. "Policy-Induced Innovation in Clean Technologies: Evidence from the Car Market," CESifo Working Paper Series 9422, CESifo.
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    4. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    5. Lazkano, Itziar & Nøstbakken, Linda & Pelli, Martino, 2017. "From fossil fuels to renewables: The role of electricity storage," European Economic Review, Elsevier, vol. 99(C), pages 113-129.
    6. Lazkano, Itziar & Pham, Linh, 2016. "Do Fossil fuel Taxes Promote Innovation in Renewable Electricity Generation?," Discussion Paper Series in Economics 16/2016, Norwegian School of Economics, Department of Economics.
    7. repec:spo:wpmain:info:hdl:2441/14g286e42n8bl9is6h16b18kes is not listed on IDEAS
    8. van den Bijgaart, Inge, 2016. "Essays in environmental economics and policy," Other publications TiSEM 298bee2a-cb08-4173-9fe1-8, Tilburg University, School of Economics and Management.
    9. Lamperti, Francesco & Napoletano, Mauro & Roventini, Andrea, 2020. "Green Transitions And The Prevention Of Environmental Disasters: Market-Based Vs. Command-And-Control Policies," Macroeconomic Dynamics, Cambridge University Press, vol. 24(7), pages 1861-1880, October.
    10. repec:hal:spmain:info:hdl:2441/14g286e42n8bl9is6h16b18kes is not listed on IDEAS
    11. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    12. Lööf, Hans & Perez, Luis & Baum, Christopher F, 2018. "Directed Technical Change in Clean Energy: Evidence from the Solar Industry," Working Paper Series in Economics and Institutions of Innovation 470, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    13. Hémous, David & Dechezleprêtre, Antoine & Olsen, Morten & Zanella, carlo, 2019. "Automating Labor: Evidence from Firm-level Patent Data," CEPR Discussion Papers 14249, C.E.P.R. Discussion Papers.
    14. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    15. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    16. Jan Witajewski-Baltvilks & Elena Verdolini & Massimo Tavoni, 2015. "Directed Technological Change and Energy Efficiency Improvements," Working Papers 2015.78, Fondazione Eni Enrico Mattei.
    17. Barbieri, Nicolò, 2016. "Fuel prices and the invention crowding out effect: Releasing the automotive industry from its dependence on fossil fuel," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 222-234.
    18. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
    19. Brehm, Johannes & aus dem Moore, Nils & Gruhl, Henri, 2022. "Driving Innovation? – Carbon Tax Effects in the Swedish Transport Sector," VfS Annual Conference 2022 (Basel): Big Data in Economics 264085, Verein für Socialpolitik / German Economic Association.
    20. Shiell, Leslie & Lyssenko, Nikita, 2014. "Climate policy and induced R&D: How great is the effect?," Energy Economics, Elsevier, vol. 46(C), pages 279-294.
    21. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    22. Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2017. "Induced technological change and energy efficiency improvements," Energy Economics, Elsevier, vol. 68(S1), pages 17-32.

    More about this item

    Keywords

    Carbon Taxes;

    JEL classification:

    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • L62 - Industrial Organization - - Industry Studies: Manufacturing - - - Automobiles; Other Transportation Equipment; Related Parts and Equipment

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-01496920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.