[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jgames/v1y2010i2p117-136d8348.html
   My bibliography  Save this article

A Choice Prediction Competition for Market Entry Games: An Introduction

Author

Listed:
  • Ido Erev

    (Max Wertheimer Minerva Center for Cognitive Studies, Faculty of Industrial Engineering and Management, Technion, Haifa 32000, Israel)

  • Eyal Ert

    (Computer Laboratory for Experimental Research, Harvard Business School, Boston, MA, 02163, USA)

  • Alvin E. Roth

    (Department of Economics, 308 Littauer, Harvard University, Cambridge, MA 02138, USA
    Harvard Business School, 441 Baker Library, Boston, MA 02163, USA)

Abstract
A choice prediction competition is organized that focuses on decisions from experience in market entry games (http://sites.google.com/site/gpredcomp/ and http://www.mdpi.com/si/games/predict-behavior/). The competition is based on two experiments: An estimation experiment, and a competition experiment. The two experiments use the same methods and subject pool, and examine games randomly selected from the same distribution. The current introductory paper presents the results of the estimation experiment, and clarifies the descriptive value of several baseline models. The experimental results reveal the robustness of eight behavioral tendencies that were documented in previous studies of market entry games and individual decisions from experience. The best baseline model (I-SAW) assumes reliance on small samples of experiences, and strong inertia when the recent results are not surprising. The competition experiment will be run in May 2010 (after the completion of this introduction), but they will not be revealed until September. To participate in the competition, researchers are asked to E-mail the organizers models (implemented in computer programs) that read the incentive structure as input, and derive the predicted behavior as an output. The submitted models will be ranked based on their prediction error. The winners of the competition will be invited to publish a paper that describes their model.

Suggested Citation

  • Ido Erev & Eyal Ert & Alvin E. Roth, 2010. "A Choice Prediction Competition for Market Entry Games: An Introduction," Games, MDPI, vol. 1(2), pages 1-20, May.
  • Handle: RePEc:gam:jgames:v:1:y:2010:i:2:p:117-136:d:8348
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-4336/1/2/117/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-4336/1/2/117/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Sundali, James A. & Rapoport, Amnon & Seale, Darryl A., 1995. "Coordination in Market Entry Games with Symmetric Players," Organizational Behavior and Human Decision Processes, Elsevier, vol. 64(2), pages 203-218, November.
    3. Yechiam, Eldad & Busemeyer, Jerome R., 2008. "Evaluating generalizability and parameter consistency in learning models," Games and Economic Behavior, Elsevier, vol. 63(1), pages 370-394, May.
    4. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    5. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    6. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    7. Urs Fischbacher, 2007. "z-Tree: Zurich toolbox for ready-made economic experiments," Experimental Economics, Springer;Economic Science Association, vol. 10(2), pages 171-178, June.
    8. Timothy C. Salmon, 2001. "An Evaluation of Econometric Models of Adaptive Learning," Econometrica, Econometric Society, vol. 69(6), pages 1597-1628, November.
    9. Cheung, Yin-Wong & Friedman, Daniel, 1997. "Individual Learning in Normal Form Games: Some Laboratory Results," Games and Economic Behavior, Elsevier, vol. 19(1), pages 46-76, April.
    10. Erev, Ido & Bereby-Meyer, Yoella & Roth, Alvin E., 1999. "The effect of adding a constant to all payoffs: experimental investigation, and implications for reinforcement learning models," Journal of Economic Behavior & Organization, Elsevier, vol. 39(1), pages 111-128, May.
    11. Dan Lovallo & Colin Camerer, 1999. "Overconfidence and Excess Entry: An Experimental Approach," American Economic Review, American Economic Association, vol. 89(1), pages 306-318, March.
    12. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    13. David J. Cooper & Susan Garvin & John H. Kagel, 1997. "Signalling and Adaptive Learning in an Entry Limit Pricing Game," RAND Journal of Economics, The RAND Corporation, vol. 28(4), pages 662-683, Winter.
    14. David Cooper & John Kagel, 2008. "Learning and transfer in signaling games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 34(3), pages 415-439, March.
    15. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    16. Yaw Nyarko & Andrew Schotter, 2002. "An Experimental Study of Belief Learning Using Elicited Beliefs," Econometrica, Econometric Society, vol. 70(3), pages 971-1005, May.
    17. Erev, Ido & Rapoport, Amnon, 1998. "Coordination, "Magic," and Reinforcement Learning in a Market Entry Game," Games and Economic Behavior, Elsevier, vol. 23(2), pages 146-175, May.
    18. Arifovic, Jasmina & McKelvey, Richard D. & Pevnitskaya, Svetlana, 2006. "An initial implementation of the Turing tournament to learning in repeated two-person games," Games and Economic Behavior, Elsevier, vol. 57(1), pages 93-122, October.
    19. Brit Grosskopf & Ido Erev & Eldad Yechiam, 2006. "Foregone with the Wind: Indirect Payoff Information and its Implications for Choice," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(2), pages 285-302, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chernov, G. & Susin, I., 2019. "Models of learning in games: An overview," Journal of the New Economic Association, New Economic Association, vol. 44(4), pages 77-125.
    2. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    3. Ho, Teck H. & Camerer, Colin F. & Chong, Juin-Kuan, 2007. "Self-tuning experience weighted attraction learning in games," Journal of Economic Theory, Elsevier, vol. 133(1), pages 177-198, March.
    4. Ioannou, Christos A. & Romero, Julian, 2014. "A generalized approach to belief learning in repeated games," Games and Economic Behavior, Elsevier, vol. 87(C), pages 178-203.
    5. Ido Erev & Alvin Roth & Robert Slonim & Greg Barron, 2007. "Learning and equilibrium as useful approximations: Accuracy of prediction on randomly selected constant sum games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(1), pages 29-51, October.
    6. Teck H Ho & Colin Camerer & Juin-Kuan Chong, 2003. "Functional EWA: A one-parameter theory of learning in games," Levine's Working Paper Archive 506439000000000514, David K. Levine.
    7. Cason, Timothy N. & Friedman, Daniel & Hopkins, Ed, 2010. "Testing the TASP: An experimental investigation of learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2309-2331, November.
    8. Wolf Ze'ev Ehrblatt & Kyle Hyndman & Erkut Y. ÄOzbay & Andrew Schotter, 2006. "Convergence: An Experimental Study," Levine's Working Paper Archive 122247000000001148, David K. Levine.
    9. Duffy, John & Hopkins, Ed, 2005. "Learning, information, and sorting in market entry games: theory and evidence," Games and Economic Behavior, Elsevier, vol. 51(1), pages 31-62, April.
    10. Haruvy, Ernan & Stahl, Dale O., 2012. "Between-game rule learning in dissimilar symmetric normal-form games," Games and Economic Behavior, Elsevier, vol. 74(1), pages 208-221.
    11. Rutström, E. Elisabet & Wilcox, Nathaniel T., 2009. "Stated beliefs versus inferred beliefs: A methodological inquiry and experimental test," Games and Economic Behavior, Elsevier, vol. 67(2), pages 616-632, November.
    12. Camerer, Colin F. & Ho, Teck-Hua, 2015. "Behavioral Game Theory Experiments and Modeling," Handbook of Game Theory with Economic Applications,, Elsevier.
    13. Shafran, Aric P., 2012. "Learning in games with risky payoffs," Games and Economic Behavior, Elsevier, vol. 75(1), pages 354-371.
    14. Wen, Yuanji, 2018. "Voluntary information acquisition in an asymmetric-Information game:comparing learning theories in the laboratory," Journal of Economic Behavior & Organization, Elsevier, vol. 150(C), pages 202-219.
    15. Teck H. Ho & Xin Wang & Colin F. Camerer, 2008. "Individual Differences in EWA Learning with Partial Payoff Information," Economic Journal, Royal Economic Society, vol. 118(525), pages 37-59, January.
    16. Kets, W., 2008. "Networks and learning in game theory," Other publications TiSEM 7713fce1-3131-498c-8c6f-3, Tilburg University, School of Economics and Management.
    17. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    18. Spiliopoulos, Leonidas, 2012. "Pattern recognition and subjective belief learning in a repeated constant-sum game," Games and Economic Behavior, Elsevier, vol. 75(2), pages 921-935.
    19. Kyle Hyndman & Antoine Terracol & Jonathan Vaksmann, 2009. "Learning and sophistication in coordination games," Experimental Economics, Springer;Economic Science Association, vol. 12(4), pages 450-472, December.
    20. Claudia Neri, 2015. "Eliciting beliefs in continuous-choice games: a double auction experiment," Experimental Economics, Springer;Economic Science Association, vol. 18(4), pages 569-608, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgames:v:1:y:2010:i:2:p:117-136:d:8348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.