[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v70y2020icp27-40.html
   My bibliography  Save this article

Valuation of Asian options with default risk under GARCH models

Author

Listed:
  • Wang, Xingchun
Abstract
In this paper, we consider Asian options with default risk under GARCH models. We adopt a GARCH process to describe the dynamics of the underlying asset and consider default risk in a reduced form model. In addition, the correlation between the intensity of default and the variance of the underlying asset is considered. In the proposed framework, we obtain closed-form pricing formulae of Asian options with/without default risk and show Asian option values in numerical examples. Specifically, the price of European (Asian) call options with default risk is not equal to the one of European (Asian) call options without default risk even when the initial value of the intensity equals zero.

Suggested Citation

  • Wang, Xingchun, 2020. "Valuation of Asian options with default risk under GARCH models," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 27-40.
  • Handle: RePEc:eee:reveco:v:70:y:2020:i:c:p:27-40
    DOI: 10.1016/j.iref.2020.06.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056020301325
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2020.06.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szu-Lang Liao & Hsing-Hua Huang, 2005. "Pricing Black-Scholes options with correlated interest rate risk and credit risk: an extension," Quantitative Finance, Taylor & Francis Journals, vol. 5(5), pages 443-457.
    2. Xu, Weidong & Xu, Weijun & Li, Hongyi & Xiao, Weilin, 2012. "A jump-diffusion approach to modelling vulnerable option pricing," Finance Research Letters, Elsevier, vol. 9(1), pages 48-56.
    3. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
    4. Chueh-Yung Tsao & Chao-Ching Liu, 2012. "Asian Options with Credit Risks: Pricing and Sensitivity Analysis," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 48(S3), pages 96-115, September.
    5. Arora, Navneet & Gandhi, Priyank & Longstaff, Francis A., 2012. "Counterparty credit risk and the credit default swap market," Journal of Financial Economics, Elsevier, vol. 103(2), pages 280-293.
    6. Xingchun Wang, 2020. "Analytical valuation of Asian options with counterparty risk under stochastic volatility models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 410-429, March.
    7. Fusai, Gianluca & Meucci, Attilio, 2008. "Pricing discretely monitored Asian options under Levy processes," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2076-2088, October.
    8. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409, World Scientific Publishing Co. Pte. Ltd..
    9. Bara Kim & In-Suk Wee, 2014. "Pricing of geometric Asian options under Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1795-1809, October.
    10. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    11. Ning Cai & Yingda Song & Steven Kou, 2015. "A General Framework for Pricing Asian Options Under Markov Processes," Operations Research, INFORMS, vol. 63(3), pages 540-554, June.
    12. Xingchun Wang, 2017. "Differences in the Prices of Vulnerable Options with Different Counterparties," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(2), pages 148-163, February.
    13. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    14. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    15. Lihui Tian & Guanying Wang & Xingchun Wang & Yongjin Wang, 2014. "Pricing Vulnerable Options with Correlated Credit Risk Under Jump‐Diffusion Processes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(10), pages 957-979, October.
    16. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    17. Johnson, Herb & Stulz, Rene, 1987. "The Pricing of Options with Default Risk," Journal of Finance, American Finance Association, vol. 42(2), pages 267-280, June.
    18. Kim, Geonwoo & Koo, Eunho, 2016. "Closed-form pricing formula for exchange option with credit risk," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 221-227.
    19. Fard, Farzad Alavi, 2015. "Analytical pricing of vulnerable options under a generalized jump–diffusion model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 19-28.
    20. Jeon, Junkee & Kim, Geonwoo, 2019. "Pricing of vulnerable options with early counterparty credit risk," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 645-656.
    21. Klein, Peter, 1996. "Pricing Black-Scholes options with correlated credit risk," Journal of Banking & Finance, Elsevier, vol. 20(7), pages 1211-1229, August.
    22. Wang, Guanying & Wang, Xingchun & Zhou, Ke, 2017. "Pricing vulnerable options with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 91-103.
    23. Chao Wang & Jianmin He & Shouwei Li, 2016. "The European Vulnerable Option Pricing with Jumps Based on a Mixed Model," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-9, December.
    24. Wang, Xingchun, 2016. "Pricing vulnerable options with stochastic default barriers," Finance Research Letters, Elsevier, vol. 19(C), pages 305-313.
    25. Hull, John & White, Alan, 1995. "The impact of default risk on the prices of options and other derivative securities," Journal of Banking & Finance, Elsevier, vol. 19(2), pages 299-322, May.
    26. Klein, Peter & Inglis, Michael, 2001. "Pricing vulnerable European options when the option's payoff can increase the risk of financial distress," Journal of Banking & Finance, Elsevier, vol. 25(5), pages 993-1012, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xingchun, 2021. "Valuation of options on the maximum of two prices with default risk under GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    2. Guo, Peidong & Zhang, Jizhou & Wang, Qian, 2020. "Path-dependent game options with Asian features," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Xingchun Wang, 2021. "Pricing vulnerable options with jump risk and liquidity risk," Review of Derivatives Research, Springer, vol. 24(3), pages 243-260, October.
    4. He, Ting, 2023. "An imprecise pricing model for Asian options based on Nonparametric predictive inference," Pacific-Basin Finance Journal, Elsevier, vol. 77(C).
    5. Xingchun Wang & Han Zhang, 2024. "Pricing Fade-in Options Under GARCH-Jump Processes," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2563-2584, October.
    6. Dibooglu, Sel & Cevik, Emrah I. & Tamimi, Hussein A. Hassan Al, 2022. "Credit default risk in Islamic and conventional banks: Evidence from a GARCH option pricing model," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 396-411.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xingchun Wang, 2020. "Analytical valuation of Asian options with counterparty risk under stochastic volatility models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 410-429, March.
    2. Gechun Liang & Xingchun Wang, 2021. "Pricing vulnerable options in a hybrid credit risk model driven by Heston–Nandi GARCH processes," Review of Derivatives Research, Springer, vol. 24(1), pages 1-30, April.
    3. Wang, Xingchun, 2021. "Valuation of options on the maximum of two prices with default risk under GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    4. Jeon, Junkee & Kim, Geonwoo, 2019. "Pricing of vulnerable options with early counterparty credit risk," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 645-656.
    5. Geonwoo Kim, 2020. "Valuation of Exchange Option with Credit Risk in a Hybrid Model," Mathematics, MDPI, vol. 8(11), pages 1-11, November.
    6. Xingchun Wang, 2021. "Pricing vulnerable options with jump risk and liquidity risk," Review of Derivatives Research, Springer, vol. 24(3), pages 243-260, October.
    7. Li, Zelei & Wang, Xingchun, 2020. "Valuing spread options with counterparty risk and jump risk," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    8. Xingchun Wang, 2022. "Valuing fade-in options with default risk in Heston–Nandi GARCH models," Review of Derivatives Research, Springer, vol. 25(1), pages 1-22, April.
    9. Jeon, Jaegi & Kim, Geonwoo & Huh, Jeonggyu, 2021. "An asymptotic expansion approach to the valuation of vulnerable options under a multiscale stochastic volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    10. Wang, Guanying & Wang, Xingchun & Shao, Xinjian, 2022. "Exchange options for catastrophe risk management," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    11. F. Antonelli & A. Ramponi & S. Scarlatti, 2021. "CVA and vulnerable options pricing by correlation expansions," Annals of Operations Research, Springer, vol. 299(1), pages 401-427, April.
    12. Xie, Yurong & Deng, Guohe, 2022. "Vulnerable European option pricing in a Markov regime-switching Heston model with stochastic interest rate," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    13. Che Guo & Xingchun Wang, 2022. "Pricing vulnerable options under correlated skew Brownian motions," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 852-867, May.
    14. Ma, Chaoqun & Ma, Zonggang & Xiao, Shisong, 2019. "A closed-form pricing formula for vulnerable European options under stochastic yield spreads and interest rates," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 59-68.
    15. Panhong Cheng & Zhihong Xu & Zexing Dai, 2023. "Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment," Mathematics and Financial Economics, Springer, volume 17, number 3, December.
    16. Wang, Xingchun, 2022. "Pricing vulnerable options with stochastic liquidity risk," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    17. Wang, Guanying & Wang, Xingchun & Zhou, Ke, 2017. "Pricing vulnerable options with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 91-103.
    18. Lie-Jane Kao, 2016. "Credit valuation adjustment of cap and floor with counterparty risk: a structural pricing model for vulnerable European options," Review of Derivatives Research, Springer, vol. 19(1), pages 41-64, April.
    19. Zaevski, Tsvetelin S. & Kounchev, Ognyan & Savov, Mladen, 2019. "Two frameworks for pricing defaultable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 309-319.
    20. Zonggang Ma & Chaoqun Ma & Zhijian Wu, 2022. "Pricing commodity-linked bonds with stochastic convenience yield, interest rate and counterparty credit risk: application of Mellin transform methods," Review of Derivatives Research, Springer, vol. 25(1), pages 47-91, April.

    More about this item

    Keywords

    Asian options; Default risk; GARCH Models;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:70:y:2020:i:c:p:27-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.