[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/jetheo/v204y2022ics0022053122000916.html
   My bibliography  Save this article

On the management of population immunity

Author

Listed:
  • Toxvaerd, Flavio
  • Rowthorn, Robert
Abstract
This paper considers a susceptible-infected-recovered type model of infectious diseases, such as COVID-19 or swine flu, in which costly treatment or vaccination confers immunity on recovered individuals. Once immune, individuals indirectly protect the remaining susceptibles, who benefit from a measure of herd immunity. Treatment and vaccination directly induce such herd immunity, which builds up over time. Optimal treatment is shown to involve intervention at early stages of the epidemic, while optimal vaccination may defer intervention to intermediate stages. Thus, while treatment and vaccination have superficial similarities, their effects and desirability at different stages of the epidemic are different. Equilibrium vaccination is qualitatively similar to socially optimal vaccination, while equilibrium treatment differs in nature from socially optimal treatment. The optimal policies are compared to traditional non-economic public health interventions which rely on herd immunity thresholds.

Suggested Citation

  • Toxvaerd, Flavio & Rowthorn, Robert, 2022. "On the management of population immunity," Journal of Economic Theory, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:jetheo:v:204:y:2022:i:c:s0022053122000916
    DOI: 10.1016/j.jet.2022.105501
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022053122000916
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jet.2022.105501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scott Barrett, 2003. "Global Disease Eradication," Journal of the European Economic Association, MIT Press, vol. 1(2-3), pages 591-600, 04/05.
    2. Barrett, Scott & Hoel, Michael, 2007. "Optimal disease eradication," Environment and Development Economics, Cambridge University Press, vol. 12(5), pages 627-652, October.
    3. Francis, Peter J., 1997. "Dynamic epidemiology and the market for vaccinations," Journal of Public Economics, Elsevier, vol. 63(3), pages 383-406, February.
    4. Chryssi Giannitsarou & Stephen Kissler & Flavio Toxvaerd, 2021. "Waning Immunity and the Second Wave: Some Projections for SARS-CoV-2," American Economic Review: Insights, American Economic Association, vol. 3(3), pages 321-338, September.
    5. Goldman Steven Marc & Lightwood James, 2002. "Cost Optimization in the SIS Model of Infectious Disease with Treatment," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 2(1), pages 1-24, April.
    6. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    7. Mark Gersovitz & Jeffrey S. Hammer, 2004. "The Economical Control of Infectious Diseases," Economic Journal, Royal Economic Society, vol. 114(492), pages 1-27, January.
    8. Rowthorn, Robert & Toxvaerd, Flavio, 2012. "The Optimal Control of Infectious Diseases via Prevention and Treatment," CEPR Discussion Papers 8925, C.E.P.R. Discussion Papers.
    9. George J Milne & Nilimesh Halder & Joel K Kelso, 2013. "The Cost Effectiveness of Pandemic Influenza Interventions: A Pandemic Severity Based Analysis," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    10. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    11. Boulier Bryan L. & Datta Tejwant S. & Goldfarb Robert S, 2007. "Vaccination Externalities," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 7(1), pages 1-27, May.
    12. Makris, M. & Toxvaerd, F., 2020. "Great Expectations: Social Distancing in Anticipation of Pharmaceutical Innovations," Cambridge Working Papers in Economics 2097, Faculty of Economics, University of Cambridge.
    13. Brito, Dagobert L. & Sheshinski, Eytan & Intriligator, Michael D., 1991. "Externalities and compulsary vaccinations," Journal of Public Economics, Elsevier, vol. 45(1), pages 69-90, June.
    14. Auld, M. Christopher, 2003. "Choices, beliefs, and infectious disease dynamics," Journal of Health Economics, Elsevier, vol. 22(3), pages 361-377, May.
    15. Jeffrey Ely & Andrea Galeotti & Jakub Steiner, 2021. "Rotation as Contagion Mitigation," Management Science, INFORMS, vol. 67(5), pages 3117-3126, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Bizzarri & Fabrizio Panebianco & Paolo Pin, 2023. "Homophily and infections: static and dynamic effects," Papers 2304.11934, arXiv.org, revised Aug 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toxvaerd, F. & Rowthorn, R., 2020. "On the Management of Population Immunity," Cambridge Working Papers in Economics 2080, Faculty of Economics, University of Cambridge.
    2. Toxvaerd, Flavio, 2010. "Recurrent Infection and Externalities in Prevention," CEPR Discussion Papers 8112, C.E.P.R. Discussion Papers.
    3. Stéphane Mechoulan, 2007. "Market structure and communicable diseases," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 40(2), pages 468-492, May.
    4. Telalagic, S., 2012. "Optimal Treatment of an SIS Disease with Two Strains," Cambridge Working Papers in Economics 1229, Faculty of Economics, University of Cambridge.
    5. Yasushi Iwamoto, 2021. "Welfare economics of managing an epidemic: an exposition," The Japanese Economic Review, Springer, vol. 72(4), pages 537-579, October.
    6. Barrett, Scott & Hoel, Michael, 2007. "Optimal disease eradication," Environment and Development Economics, Cambridge University Press, vol. 12(5), pages 627-652, October.
    7. Toxvaerd, Flavio, 2010. "Infection, Acquired Immunity and Externalities in Treatment," CEPR Discussion Papers 8111, C.E.P.R. Discussion Papers.
    8. M. Ceddia, 2012. "Optimal Disease Eradication in Sympatric Metapopulations," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(4), pages 499-530, August.
    9. Eric Nævdal, 2012. "Fighting Transient Epidemics—Optimal Vaccination Schedules Before And After An Outbreak," Health Economics, John Wiley & Sons, Ltd., vol. 21(12), pages 1456-1476, December.
    10. Rowthorn, Robert & Toxvaerd, Flavio, 2012. "The Optimal Control of Infectious Diseases via Prevention and Treatment," CEPR Discussion Papers 8925, C.E.P.R. Discussion Papers.
    11. Fenichel, Eli P., 2013. "Economic considerations for social distancing and behavioral based policies during an epidemic," Journal of Health Economics, Elsevier, vol. 32(2), pages 440-451.
    12. Andrea Galeotti & Brian W. Rogers, 2013. "Strategic Immunization and Group Structure," American Economic Journal: Microeconomics, American Economic Association, vol. 5(2), pages 1-32, May.
    13. Goodkin-Gold, Matthew & Kremer, Michael & Snyder, Christopher M. & Williams, Heidi, 2022. "Optimal vaccine subsidies for endemic diseases," International Journal of Industrial Organization, Elsevier, vol. 84(C).
    14. Goyal, Sanjeev & Vigier, Adrien, 2015. "Interaction, protection and epidemics," Journal of Public Economics, Elsevier, vol. 125(C), pages 64-69.
    15. David E. Bloom & Michael Kuhn & Klaus Prettner, 2022. "Modern Infectious Diseases: Macroeconomic Impacts and Policy Responses," Journal of Economic Literature, American Economic Association, vol. 60(1), pages 85-131, March.
    16. Terrence August & Tunay I. Tunca, 2006. "Network Software Security and User Incentives," Management Science, INFORMS, vol. 52(11), pages 1703-1720, November.
    17. Troy Tassier & Philip Polgreen & Alberto Segre, 2015. "Vaccination Games with Peer Effects in a Heterogeneous Hospital Worker Population," Administrative Sciences, MDPI, vol. 5(1), pages 1-25, January.
    18. Rikard Forslid & Mathias Herzing, 2015. "On the Optimal Production Capacity for Influenza Vaccine," Health Economics, John Wiley & Sons, Ltd., vol. 24(6), pages 726-741, June.
    19. repec:esx:essedp:707 is not listed on IDEAS
    20. Martin F. Quaas & Jasper N. Meya & Hanna Schenk & Björn Bos & Moritz A. Drupp & Till Requate, 2020. "The Social Cost of Contacts: Theory and Evidence for the Covid-19 Pandemic in Germany," CESifo Working Paper Series 8347, CESifo.
    21. M. Alper Çenesiz & Luís Guimarães, 2022. "COVID‐19: What if immunity wanes?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(S1), pages 626-664, February.

    More about this item

    Keywords

    Economic epidemiology; Herd immunity; Treatment; Vaccination; Externalities;
    All these keywords.

    JEL classification:

    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:204:y:2022:i:c:s0022053122000916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622869 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.