[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v22y2012icp206-218.html
   My bibliography  Save this article

Solving a location-routing problem with a multiobjective approach: the design of urban evacuation plans

Author

Listed:
  • Coutinho-Rodrigues, João
  • Tralhão, Lino
  • Alçada-Almeida, Luís
Abstract
Fires, earthquakes, floods, acts of terrorism, nuclear accidents and other catastrophes that may occur in (or affect) urban areas, constitute an important concern for emergency and rescue services, such as fire departments and medical assistance. This paper introduces a multiobjective approach to identify evacuation paths and the location of shelters for urban evacuation planning. Six objectives including risks associated to paths and shelter locations, evacuation path lengths, and the final evacuation time from shelters to, for instance, hospitals, were considered in a mixed integer linear programming model. The proposed approach was tested for a simulated fire situation concerning the historical urban city center of an old European city (Coimbra, Portugal). The modeling approach may also support other emergency situations for which evacuation plans are pertinent. The solutions generated are compared in the objective space via various graphical techniques and represented via color-coded graphics in a Geographic Information System (GIS) where evacuation routes, rescue facilities and the respective building assignments are shown.

Suggested Citation

  • Coutinho-Rodrigues, João & Tralhão, Lino & Alçada-Almeida, Luís, 2012. "Solving a location-routing problem with a multiobjective approach: the design of urban evacuation plans," Journal of Transport Geography, Elsevier, vol. 22(C), pages 206-218.
  • Handle: RePEc:eee:jotrge:v:22:y:2012:i:c:p:206-218
    DOI: 10.1016/j.jtrangeo.2012.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692312000105
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2012.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    2. Current, John & Marsh, Michael, 1993. "Multiobjective transportation network design and routing problems: Taxonomy and annotation," European Journal of Operational Research, Elsevier, vol. 65(1), pages 4-19, February.
    3. Mark S. Daskin & Edmund H. Stern, 1981. "A Hierarchical Objective Set Covering Model for Emergency Medical Service Vehicle Deployment," Transportation Science, INFORMS, vol. 15(2), pages 137-152, May.
    4. Revelle, Charles & Snyder, Stephanie, 1995. "Integrated fire and ambulance siting: A deterministic model," Socio-Economic Planning Sciences, Elsevier, vol. 29(4), pages 261-271, December.
    5. Current, John & Min, Hokey & Schilling, David, 1990. "Multiobjective analysis of facility location decisions," European Journal of Operational Research, Elsevier, vol. 49(3), pages 295-307, December.
    6. Jenelius, Erik, 2009. "Network structure and travel patterns: explaining the geographical disparities of road network vulnerability," Journal of Transport Geography, Elsevier, vol. 17(3), pages 234-244.
    7. Widener, Michael J. & Horner, Mark W., 2011. "A hierarchical approach to modeling hurricane disaster relief goods distribution," Journal of Transport Geography, Elsevier, vol. 19(4), pages 821-828.
    8. WOLSEY, Laurence A., 1989. "Strong formulations for mixed integer programming: a survey," LIDAM Reprints CORE 864, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Fang, Zhixiang & Zong, Xinlu & Li, Qingquan & Li, Qiuping & Xiong, Shengwu, 2011. "Hierarchical multi-objective evacuation routing in stadium using ant colony optimization approach," Journal of Transport Geography, Elsevier, vol. 19(3), pages 443-451.
    10. Tzeng, Gwo-Hshiung & Cheng, Hsin-Jung & Huang, Tsung Dow, 2007. "Multi-objective optimal planning for designing relief delivery systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 673-686, November.
    11. Schilling, David A. & Revelle, Charles & Cohon, Jared & Elzinga, D. Jack, 1980. "Some models for fire protection locational decisions," European Journal of Operational Research, Elsevier, vol. 5(1), pages 1-7, July.
    12. Sherali, Hanif D. & Carter, Todd B. & Hobeika, Antoine G., 1991. "A location-allocation model and algorithm for evacuation planning under hurricane/flood conditions," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 439-452, December.
    13. Current, John & Min, HoKey, 1986. "Multiobjective design of transportation networks: Taxonomy and annotation," European Journal of Operational Research, Elsevier, vol. 26(2), pages 187-201, August.
    14. David Schilling & D. Jack Elzinga & Jared Cohon & Richard Church & Charles ReVelle, 1979. "The Team/Fleet Models for Simultaneous Facility and Equipment Siting," Transportation Science, INFORMS, vol. 13(2), pages 163-175, May.
    15. Saadatseresht, Mohammad & Mansourian, Ali & Taleai, Mohammad, 2009. "Evacuation planning using multiobjective evolutionary optimization approach," European Journal of Operational Research, Elsevier, vol. 198(1), pages 305-314, October.
    16. Thill, Jean-Claude & Dao, Thi Hong Diep & Zhou, Yuhong, 2011. "Traveling in the three-dimensional city: applications in route planning, accessibility assessment, location analysis and beyond," Journal of Transport Geography, Elsevier, vol. 19(3), pages 405-421.
    17. Bono, Flavio & Gutiérrez, Eugenio, 2011. "A network-based analysis of the impact of structural damage on urban accessibility following a disaster: the case of the seismically damaged Port Au Prince and Carrefour urban road networks," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1443-1455.
    18. Terry Ross, G. & Soland, Richard M., 1980. "A multicriteria approach to the location of public facilities," European Journal of Operational Research, Elsevier, vol. 4(5), pages 307-321, May.
    19. Alves, Maria Joao & Climaco, Joao, 2007. "A review of interactive methods for multiobjective integer and mixed-integer programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 99-115, July.
    20. Francis, R. L. & Lowe, T. J. & Tamir, A. & Emir-Farinas, H., 2004. "A framework for demand point and solution space aggregation analysis for location models," European Journal of Operational Research, Elsevier, vol. 159(3), pages 574-585, December.
    21. ReVelle, Charles, 1989. "Review, extension and prediction in emergency service siting models," European Journal of Operational Research, Elsevier, vol. 40(1), pages 58-69, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Üster, Halit & Wang, Xinghua & Yates, Justin T., 2018. "Strategic Evacuation Network Design (SEND) under cost and time considerations," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 124-145.
    2. Wang, Qingyi & Wallace, Stein W., 2022. "Non-compliance in transit-based evacuation pick-up point assignments," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    3. Kılcı, Fırat & Kara, Bahar Yetiş & Bozkaya, Burçin, 2015. "Locating temporary shelter areas after an earthquake: A case for Turkey," European Journal of Operational Research, Elsevier, vol. 243(1), pages 323-332.
    4. Kimms, A. & Maiwald, M., 2018. "Bi-objective safe and resilient urban evacuation planning," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1122-1136.
    5. Hammad, Ahmed W A & Akbarnezhad, Ali & Rey, David, 2017. "Sustainable urban facility location: Minimising noise pollution and network congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 38-59.
    6. Coutinho-Rodrigues, João & Tralhão, Lino & Alçada-Almeida, Luís, 2012. "A bi-objective modeling approach applied to an urban semi-desirable facility location problem," European Journal of Operational Research, Elsevier, vol. 223(1), pages 203-213.
    7. Aghaie, Sepide & Karimi, Behrooz, 2022. "Location-allocation-routing for emergency shelters based on geographical information system (ArcGIS) by NSGA-II (case study: Earthquake occurrence in Tehran (District-1))," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    8. Esposito Amideo, A. & Scaparra, M.P. & Kotiadis, K., 2019. "Optimising shelter location and evacuation routing operations: The critical issues," European Journal of Operational Research, Elsevier, vol. 279(2), pages 279-295.
    9. Pérez-Galarce, Francisco & Canales, Linda J. & Vergara, Claudio & Candia-Véjar, Alfredo, 2017. "An optimization model for the location of disaster refuges," Socio-Economic Planning Sciences, Elsevier, vol. 59(C), pages 56-66.
    10. Goerigk, Marc & Deghdak, Kaouthar & Heßler, Philipp, 2014. "A comprehensive evacuation planning model and genetic solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 82-97.
    11. Bayram, Vedat & Tansel, Barbaros Ç. & Yaman, Hande, 2015. "Compromising system and user interests in shelter location and evacuation planning," Transportation Research Part B: Methodological, Elsevier, vol. 72(C), pages 146-163.
    12. Kınay, Ömer Burak & Yetis Kara, Bahar & Saldanha-da-Gama, Francisco & Correia, Isabel, 2018. "Modeling the shelter site location problem using chance constraints: A case study for Istanbul," European Journal of Operational Research, Elsevier, vol. 270(1), pages 132-145.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunjia Ma & Wei Xu & Lianjie Qin & Xiujuan Zhao, 2019. "Site Selection Models in Natural Disaster Shelters: A Review," Sustainability, MDPI, vol. 11(2), pages 1-24, January.
    2. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    3. Hadas, Yuval & Laor, Amir, 2013. "Network design model with evacuation constraints," Transportation Research Part A: Policy and Practice, Elsevier, vol. 47(C), pages 1-9.
    4. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    5. Coutinho-Rodrigues, João & Tralhão, Lino & Alçada-Almeida, Luís, 2012. "A bi-objective modeling approach applied to an urban semi-desirable facility location problem," European Journal of Operational Research, Elsevier, vol. 223(1), pages 203-213.
    6. Ahmad Mohamadi & Saeed Yaghoubi & Mir Saman Pishvaee, 2019. "Fuzzy multi-objective stochastic programming model for disaster relief logistics considering telecommunication infrastructures: a case study," Operational Research, Springer, vol. 19(1), pages 59-99, March.
    7. Sorensen, Paul & Church, Richard, 2010. "Integrating expected coverage and local reliability for emergency medical services location problems," Socio-Economic Planning Sciences, Elsevier, vol. 44(1), pages 8-18, March.
    8. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
    9. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.
    10. Leknes, Håkon & Aartun, Eirik Skorge & Andersson, Henrik & Christiansen, Marielle & Granberg, Tobias Andersson, 2017. "Strategic ambulance location for heterogeneous regions," European Journal of Operational Research, Elsevier, vol. 260(1), pages 122-133.
    11. Dirk Degel & Lara Wiesche & Sebastian Rachuba & Brigitte Werners, 2015. "Time-dependent ambulance allocation considering data-driven empirically required coverage," Health Care Management Science, Springer, vol. 18(4), pages 444-458, December.
    12. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    13. Alan T. Murray & Daoqin Tong & Kamyoung Kim, 2010. "Enhancing Classic Coverage Location Models," International Regional Science Review, , vol. 33(2), pages 115-133, April.
    14. Dmitrii Usanov & G.A. Guido Legemaate & Peter M. van de Ven & Rob D. van der Mei, 2019. "Fire truck relocation during major incidents," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(2), pages 105-122, March.
    15. Goerigk, Marc & Deghdak, Kaouthar & Heßler, Philipp, 2014. "A comprehensive evacuation planning model and genetic solution algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 82-97.
    16. Carvalho, A.S. & Captivo, M.E. & Marques, I., 2020. "Integrating the ambulance dispatching and relocation problems to maximize system’s preparedness," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1064-1080.
    17. M Gendreau & G Laporte & F Semet, 2006. "The maximal expected coverage relocation problem for emergency vehicles," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 22-28, January.
    18. Xiujuan Zhao & Wei Xu & Yunjia Ma & Fuyu Hu, 2015. "Scenario-Based Multi-Objective Optimum Allocation Model for Earthquake Emergency Shelters Using a Modified Particle Swarm Optimization Algorithm: A Case Study in Chaoyang District, Beijing, China," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-16, December.
    19. Cheng, Yung-Hsiang & Liang, Zheng-Xian, 2014. "A strategic planning model for the railway system accident rescue problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 75-96.
    20. Xiujuan Zhao & Peng Du & Jianguo Chen & Dapeng Yu & Wei Xu & Shiyan Lou & Hongyong Yuan & Kuai Peng Ip, 2020. "A Typhoon Shelter Selection and Evacuee Allocation Model: A Case Study of Macao (SAR), China," Sustainability, MDPI, vol. 12(8), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:22:y:2012:i:c:p:206-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.