[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v74y2017icp122-134.html
   My bibliography  Save this article

Risk measures in a quantile regression credibility framework with Fama/French data applications

Author

Listed:
  • Pitselis, Georgios
Abstract
In this paper we extend the idea of embedding the classical credibility model into risk measures, as was presented by Pitselis (2016), to the idea of embedding regression credibility into risk measures. The resulting credible regression risk measures capture the risk of individual insurer’s contract (in finance, the individual asset return portfolio) as well as the portfolio risk consisting of several similar but not identical contracts (in finance, several similar portfolios of asset returns), which are grouped together to share the risk. In insurance, credibility plays a special role of spreading the risk. In financial terminology, credibility plays a special role of diversification of risk. For each model, regression credibility models are established and the robustness of these models is investigated. Applications to Fama/French financial portfolio data are also presented.

Suggested Citation

  • Pitselis, Georgios, 2017. "Risk measures in a quantile regression credibility framework with Fama/French data applications," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 122-134.
  • Handle: RePEc:eee:insuma:v:74:y:2017:i:c:p:122-134
    DOI: 10.1016/j.insmatheco.2017.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668716303377
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2017.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James W. Taylor, 2008. "Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 382-406, Summer.
    2. Kim, Joseph H.T. & Jeon, Yongho, 2013. "Credibility theory based on trimming," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 36-47.
    3. Neykov, N.M. & Filzmoser, P. & Neytchev, P.N., 2012. "Robust joint modeling of mean and dispersion through trimming," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 34-48, January.
    4. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
    5. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    6. Pitselis, Georgios, 2016. "Credible risk measures with applications in actuarial sciences and finance," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 373-386.
    7. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    8. Pitselis, Georgios, 2013. "Quantile credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 477-489.
    9. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    10. Furman, Edward & Landsman, Zinoviy, 2006. "Tail Variance Premium with Applications for Elliptical Portfolio of Risks," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 433-462, November.
    11. Kudryavtsev, Andrey A., 2009. "Using quantile regression for rate-making," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 296-304, October.
    12. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    13. Landsman, Zinoviy & Valdez, Emiliano A., 2005. "Tail Conditional Expectations for Exponential Dispersion Models," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 189-209, May.
    14. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    15. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    16. Maritz, J. S., 1989. "Linear empirical Bayes estimation of quantiles," Statistics & Probability Letters, Elsevier, vol. 8(1), pages 59-65, May.
    17. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    18. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    19. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    20. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    21. Włodzimierz Ogryczak & Mariusz Zawadzki, 2002. "Conditional Median: A Parametric Solution Concept for Location Problems," Annals of Operations Research, Springer, vol. 110(1), pages 167-181, February.
    22. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 231-252, Spring.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Wang & Limin Wen & Zhixin Yang & Quan Yuan, 2020. "Quantile Credibility Models with Common Effects," Risks, MDPI, vol. 8(4), pages 1-10, September.
    2. Cheung, Ka Chun & Yam, Sheung Chi Phillip & Zhang, Yiying, 2022. "Satisficing credibility for heterogeneous risks," European Journal of Operational Research, Elsevier, vol. 298(2), pages 752-768.
    3. Pitselis, Georgios, 2020. "Multi-stage nested classification credibility quantile regression model," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 162-176.
    4. Chen, Yongzhao & Cheung, Ka Chun & Choi, Hugo Ming Cheung & Yam, Sheung Chi Phillip, 2020. "Evolutionary credibility risk premium," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 216-229.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pitselis, Georgios, 2016. "Credible risk measures with applications in actuarial sciences and finance," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 373-386.
    2. Pitselis, Georgios, 2020. "Multi-stage nested classification credibility quantile regression model," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 162-176.
    3. Hamidi, Benjamin & Maillet, Bertrand & Prigent, Jean-Luc, 2014. "A dynamic autoregressive expectile for time-invariant portfolio protection strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 46(C), pages 1-29.
    4. Pitselis, Georgios, 2013. "Quantile credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 477-489.
    5. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    6. Nath, Harmindar B. & Brooks, Robert D., 2020. "Investor-herding and risk-profiles: A State-Space model-based assessment," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
    7. Allen, D.E. & Powell, R.J. & Singh, A.K., 2016. "Take it to the limit: Innovative CVaR applications to extreme credit risk measurement," European Journal of Operational Research, Elsevier, vol. 249(2), pages 465-475.
    8. Eric Bouye & Mark Salmon, 2009. "Dynamic copula quantile regressions and tail area dynamic dependence in Forex markets," The European Journal of Finance, Taylor & Francis Journals, vol. 15(7-8), pages 721-750.
    9. Meligkotsidou, Loukia & Vrontos, Ioannis D. & Vrontos, Spyridon D., 2009. "Quantile regression analysis of hedge fund strategies," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 264-279, March.
    10. Reber, Beat, 2017. "Does mispricing, liquidity or third-party certification contribute to IPO downside risk?," International Review of Financial Analysis, Elsevier, vol. 51(C), pages 25-53.
    11. Antonio Rubia Serrano & Lidia Sanchis-Marco, 2015. "Measuring Tail-Risk Cross-Country Exposures in the Banking Industry," Working Papers. Serie AD 2015-01, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    12. Rubia, Antonio & Sanchis-Marco, Lidia, 2013. "On downside risk predictability through liquidity and trading activity: A dynamic quantile approach," International Journal of Forecasting, Elsevier, vol. 29(1), pages 202-219.
    13. Alex Huang, 2013. "Value at risk estimation by quantile regression and kernel estimator," Review of Quantitative Finance and Accounting, Springer, vol. 41(2), pages 225-251, August.
    14. Dimitrios G. Konstantinides & Georgios C. Zachos, 2019. "Exhibiting Abnormal Returns Under a Risk Averse Strategy," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 551-566, June.
    15. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    16. Frantisek Cech & Jozef Barunik, 2017. "Measurement of Common Risk Factors: A Panel Quantile Regression Model for Returns," Working Papers IES 2017/20, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Sep 2017.
    17. Chowdhury, Biplob & Jeyasreedharan, Nagaratnam & Dungey, Mardi, 2018. "Quantile relationships between standard, diffusion and jump betas across Japanese banks," Journal of Asian Economics, Elsevier, vol. 59(C), pages 29-47.
    18. Marco Bottone & Lea Petrella & Mauro Bernardi, 2021. "Unified Bayesian conditional autoregressive risk measures using the skew exponential power distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1079-1107, September.
    19. Thomas C. Chiang & Jiandong Li, 2012. "Stock Returns and Risk: Evidence from Quantile," JRFM, MDPI, vol. 5(1), pages 1-39, December.
    20. Chan Jennifer So Kuen & Ng Kok-Haur & Nitithumbundit Thanakorn & Peiris Shelton, 2019. "Efficient estimation of financial risk by regressing the quantiles of parametric distributions: An application to CARR models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(2), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:74:y:2017:i:c:p:122-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.