[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v35y2005i01p189-209_01.html
   My bibliography  Save this article

Tail Conditional Expectations for Exponential Dispersion Models

Author

Listed:
  • Landsman, Zinoviy
  • Valdez, Emiliano A.
Abstract
There is a growing interest in the use of the tail conditional expectation as a measure of risk. For an institution faced with a random loss, the tail conditional expectation represents the conditional average amount of loss that can be incurred in a fixed period, given that the loss exceeds a specified value. This value is typically based on the quantile of the loss distribution, the so-called value-at-risk. The tail conditional expectation can therefore provide a measure of the amount of capital needed due to exposure to loss. This paper examines this risk measure for “exponential dispersion models”, a wide and popular class of distributions to actuaries which, on one hand, generalizes the Normal and shares some of its many important properties, but on the other hand, contains many distributions of nonnegative random variables like the Gamma and the Inverse Gaussian.

Suggested Citation

  • Landsman, Zinoviy & Valdez, Emiliano A., 2005. "Tail Conditional Expectations for Exponential Dispersion Models," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 189-209, May.
  • Handle: RePEc:cup:astinb:v:35:y:2005:i:01:p:189-209_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036100014124/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junhong Du & Zhiming Li & Lijun Wu, 2019. "Optimal Stop-Loss Reinsurance Under the VaR and CTE Risk Measures: Variable Transformation Method," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 1133-1151, March.
    2. Willmot, Gordon E. & Woo, Jae-Kyung, 2022. "Remarks on a generalized inverse Gaussian type integral with applications," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    3. Ignatieva, Katja & Landsman, Zinoviy, 2019. "Conditional tail risk measures for the skewed generalised hyperbolic family," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 98-114.
    4. Indranil Ghosh & Filipe J. Marques, 2021. "Tail Conditional Expectations Based on Kumaraswamy Dispersion Models," Mathematics, MDPI, vol. 9(13), pages 1-17, June.
    5. Holland, Daniel S. & Jannot, Jason E., 2012. "Bycatch risk pools for the US West Coast Groundfish Fishery," Ecological Economics, Elsevier, vol. 78(C), pages 132-147.
    6. Landsman, Zinoviy & Vanduffel, Steven, 2011. "Bounds for some general sums of random variables," Statistics & Probability Letters, Elsevier, vol. 81(3), pages 382-391, March.
    7. Pitselis, Georgios, 2017. "Risk measures in a quantile regression credibility framework with Fama/French data applications," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 122-134.
    8. Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2016. "Multivariate tail conditional expectation for elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 216-223.
    9. Owadally, Iqbal & Landsman, Zinoviy, 2013. "A characterization of optimal portfolios under the tail mean–variance criterion," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 213-221.
    10. Psarrakos, Georgios & Vliora, Polyxeni, 2021. "Sensitivity analysis and tail variability for the Wang’s actuarial index," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 147-152.
    11. Pitselis, Georgios, 2016. "Credible risk measures with applications in actuarial sciences and finance," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 373-386.
    12. Cai, Jun & Wang, Ying & Mao, Tiantian, 2017. "Tail subadditivity of distortion risk measures and multivariate tail distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 105-116.
    13. Jeon, Yongho & Kim, Joseph H.T., 2013. "A gamma kernel density estimation for insurance loss data," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 569-579.
    14. Vernic, Raluca, 2006. "Multivariate skew-normal distributions with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 413-426, April.
    15. Kim, Joseph H.T. & Hardy, Mary R., 2009. "A capital allocation based on a solvency exchange option," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 357-366, June.
    16. Kim, Joseph H.T. & Jeon, Yongho, 2013. "Credibility theory based on trimming," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 36-47.
    17. Hu, Taizhong & Chen, Ouxiang, 2020. "On a family of coherent measures of variability," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 173-182.
    18. Raluca Vernic, 2011. "Tail Conditional Expectation for the Multivariate Pareto Distribution of the Second Kind: Another Approach," Methodology and Computing in Applied Probability, Springer, vol. 13(1), pages 121-137, March.
    19. Kristian Behrens & Yasusada Murata, 2012. "Globalization and Individual Gains from Trade (revised version)," Cahiers de recherche 1218, CIRPEE.
    20. Kim, Joseph H.T. & Kim, So-Yeun, 2019. "Tail risk measures and risk allocation for the class of multivariate normal mean–variance mixture distributions," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 145-157.
    21. Shushi, Tomer & Yao, Jing, 2020. "Multivariate risk measures based on conditional expectation and systemic risk for Exponential Dispersion Models," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 178-186.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:35:y:2005:i:01:p:189-209_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.