[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ingrde/v3y2024i2s2949753124000250.html
   My bibliography  Save this article

Impact of industrial robot on labour productivity: Empirical study based on industry panel data

Author

Listed:
  • Zhao, Yantong
  • Said, Rusmawati
  • Ismail, Normaz Wana
  • Hamzah, Hanny Zurina
Abstract
This empirical analysis explores the impact of industrial robots on labour productivity using panel data of 17 Chinese industries from 2006 to 2021. The results reveal that the development of industrial robots significantly improves labour productivity; a series of robustness tests validate this outcome. However, the impact of industrial robots on labour productivity varies across industry types. The influence coefficient of the low-density robotics industry is larger than that of the high-density robotics industry. Furthermore, although the scale of industrial robot usage before 2012 was smaller than that after 2012, its effect on labour productivity was more significant. Our findings indicate the possibility of diminishing marginal effect of industrial robots in promoting labour productivity. The mechanism analysis demonstrates that human capital level has a complete intermediating effect between industrial robots and labour productivity. Thus, industrial robot applications can contribute to labour productivity by optimising human capital structure. These findings provide crucial insights for governments and policy makers to improve labour productivity and economic growth.

Suggested Citation

  • Zhao, Yantong & Said, Rusmawati & Ismail, Normaz Wana & Hamzah, Hanny Zurina, 2024. "Impact of industrial robot on labour productivity: Empirical study based on industry panel data," Innovation and Green Development, Elsevier, vol. 3(2).
  • Handle: RePEc:eee:ingrde:v:3:y:2024:i:2:s2949753124000250
    DOI: 10.1016/j.igd.2024.100148
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2949753124000250
    Download Restriction: Open-access

    File URL: https://libkey.io/10.1016/j.igd.2024.100148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rachel Griffith & Stephen Redding & John Van Reenen, 2004. "Mapping the Two Faces of R&D: Productivity Growth in a Panel of OECD Industries," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 883-895, November.
    2. Du, Longzheng & Lin, Weifen, 2022. "Does the application of industrial robots overcome the Solow paradox? Evidence from China," Technology in Society, Elsevier, vol. 68(C).
    3. Daron Acemoglu & Claire Lelarge & Pascual Restrepo, 2020. "Competing with Robots: Firm-Level Evidence from France," AEA Papers and Proceedings, American Economic Association, vol. 110, pages 383-388, May.
    4. Cette, Gilbert & Devillard, Aurélien & Spiezia, Vincenzo, 2021. "The contribution of robots to productivity growth in 30 OECD countries over 1975–2019," Economics Letters, Elsevier, vol. 200(C).
    5. Lene Kromann & Nikolaj Malchow-Møller & Jan Rose Skaksen & Anders Sørensen, 2020. "Automation and productivity—a cross-country, cross-industry comparison," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 29(2), pages 265-287.
    6. Daron Acemoglu & Pascual Restrepo, 2018. "Low-Skill and High-Skill Automation," Journal of Human Capital, University of Chicago Press, vol. 12(2), pages 204-232.
    7. Eric LABAYE & Jaana REMES, 2015. "Digital Technologies and the Global Economy's Productivity Imperative," Communications & Strategies, IDATE, Com&Strat dept., vol. 1(100), pages 47-64, 4th quart.
    8. Philippe Aghion & Stefan Bechtold & Lea Cassar & Holger Herz, 2018. "The Causal Effects of Competition on Innovation: Experimental Evidence," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 34(2), pages 162-195.
    9. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    10. Robert J. Gordon, 2018. "Why Has Economic Growth Slowed When Innovation Appears to be Accelerating?," NBER Working Papers 24554, National Bureau of Economic Research, Inc.
    11. Miller, Stephen M. & Upadhyay, Mukti P., 2000. "The effects of openness, trade orientation, and human capital on total factor productivity," Journal of Development Economics, Elsevier, vol. 63(2), pages 399-423, December.
    12. repec:ags:aaea22:335879 is not listed on IDEAS
    13. Carl Dahlman & Sam Mealy & Martin Wermelinger, 2016. "Harnessing the digital economy for developing countries," OECD Development Centre Working Papers 334, OECD Publishing.
    14. Jaana Remes, Jan Mischke and Mekala Krishnan, 2018. "Solving the Productivity Puzzle: The Role of Demand and the Promise of Digitization," International Productivity Monitor, Centre for the Study of Living Standards, vol. 34, pages 28-51, Fall.
    15. David Sraer & David Thesmar, 2007. "Performance and Behavior of Family Firms: Evidence from the French Stock Market," Journal of the European Economic Association, MIT Press, vol. 5(4), pages 709-751, June.
    16. (Maggie) Fu, Xiaoqing & Bao, Qun & Xie, Hongjun & Fu, Xiaolan, 2021. "Diffusion of industrial robotics and inclusive growth: Labour market evidence from cross country data," Journal of Business Research, Elsevier, vol. 122(C), pages 670-684.
    17. Suna Korkmaz & Oya Korkmaz, 2017. "The Relationship between Labor Productivity and Economic Growth in OECD Countries," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 9(5), pages 71-76, May.
    18. Giacomo Damioli & Vincent Van Roy & Daniel Vertesy, 2021. "The impact of artificial intelligence on labor productivity," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 11(1), pages 1-25, March.
    19. Sai Ding & Alessandra Guariglia & Richard Harris, 2016. "The determinants of productivity in Chinese large and medium-sized industrial firms, 1998–2007," Journal of Productivity Analysis, Springer, vol. 45(2), pages 131-155, April.
    20. Dauth, Wolfgang & Findeisen, Sebastian & Südekum, Jens & Wößner, Nicole, 2017. "German robots - the impact of industrial robots on workers," IAB-Discussion Paper 201730, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    21. Rong Wang & Fayuan Wang, 2022. "Exploring the Role of Green Finance and Energy Development towards High-Quality Economic Development: Application of Spatial Durbin Model and Intermediary Effect Model," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    22. Mario Coccia, 2018. "Optimization in R&D intensity and tax on corporate profits for supporting labor productivity of nations," The Journal of Technology Transfer, Springer, vol. 43(3), pages 792-814, June.
    23. Südekum, Jens & Dauth, Wolfgang & Findeisen, Sebastian & Woessner, Nicole, 2017. "German Robots – The Impact of Industrial Robots on Workers," CEPR Discussion Papers 12306, C.E.P.R. Discussion Papers.
    24. Zhu, Minghao & Liang, Chen & Yeung, Andy C.L. & Zhou, Honggeng, 2024. "The impact of intelligent manufacturing on labor productivity: An empirical analysis of Chinese listed manufacturing companies," International Journal of Production Economics, Elsevier, vol. 267(C).
    25. Ballestar, María Teresa & Díaz-Chao, Ángel & Sainz, Jorge & Torrent-Sellens, Joan, 2020. "Knowledge, robots and productivity in SMEs: Explaining the second digital wave," Journal of Business Research, Elsevier, vol. 108(C), pages 119-131.
    26. Fan, Haichao & Hu, Yichuan & Tang, Lixin, 2021. "Labor costs and the adoption of robots in China," Journal of Economic Behavior & Organization, Elsevier, vol. 186(C), pages 608-631.
    27. Fang Cai & Yang Lu, 2013. "Population Change and Resulting Slowdown in Potential GDP Growth in China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 21(2), pages 1-14, March.
    28. Hong Cheng & Ruixue Jia & Dandan Li & Hongbin Li, 2019. "The Rise of Robots in China," Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 71-88, Spring.
    29. Gordon, Robert J., 2018. "Why Has Economic Growth Slowed When Innovation Appears To Be Accelerating?," CEPR Discussion Papers 13039, C.E.P.R. Discussion Papers.
    30. Pedrini, Giulio & Cappiello, Giuseppe, 2022. "The impact of training on labour productivity in the European utilities sector: An empirical analysis," Utilities Policy, Elsevier, vol. 74(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Dingyun & Chen, Shaojian & Feng, Zongxian & Li, Jun, 2023. "Industrial robots and firm productivity," Structural Change and Economic Dynamics, Elsevier, vol. 67(C), pages 388-406.
    2. Czarnitzki, Dirk & Fernández, Gastón P. & Rammer, Christian, 2023. "Artificial intelligence and firm-level productivity," Journal of Economic Behavior & Organization, Elsevier, vol. 211(C), pages 188-205.
    3. Sun, Wenyuan & Zhang, Zhonghui & Chen, Yang & Luan, Fushu, 2023. "Heterogeneous effects of robots on employment in agriculture, industry, and services sectors," Technology in Society, Elsevier, vol. 75(C).
    4. Parteka, Aleksandra & Kordalska, Aleksandra, 2023. "Artificial intelligence and productivity: global evidence from AI patent and bibliometric data," Technovation, Elsevier, vol. 125(C).
    5. Klump, Rainer & Jurkat, Anne & Schneider, Florian, 2021. "Tracking the rise of robots: A survey of the IFR database and its applications," MPRA Paper 107909, University Library of Munich, Germany.
    6. Liu, Liang & Yang, Kun & Fujii, Hidemichi & Liu, Jun, 2021. "Artificial intelligence and energy intensity in China’s industrial sector: Effect and transmission channel," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 276-293.
    7. Andreas Eder & Wolfgang Koller & Bernhard Mahlberg, 2024. "The contribution of industrial robots to labor productivity growth and economic convergence: a production frontier approach," Journal of Productivity Analysis, Springer, vol. 61(2), pages 157-181, April.
    8. Wang, Ting & Zhang, Yi & Liu, Chun, 2024. "Robot adoption and employment adjustment: Firm-level evidence from China," China Economic Review, Elsevier, vol. 84(C).
    9. Cui, Huijie & Liang, Shangkun & Xu, Canyu & Junli, Yu, 2024. "Robots and analyst forecast precision: Evidence from Chinese manufacturing," International Review of Financial Analysis, Elsevier, vol. 94(C).
    10. Yin, Zi Hui & Zeng, Wei Ping, 2023. "The effects of industrial intelligence on China's energy intensity: The role of technology absorptive capacity," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    11. Chen, Yang & Cheng, Liang & Lee, Chien-Chiang, 2022. "How does the use of industrial robots affect the ecological footprint? International evidence," Ecological Economics, Elsevier, vol. 198(C).
    12. Zhang, Yi & Wang, Ting & Liu, Chun, 2024. "Beyond the modern productivity paradox: The effect of robotics technology on firm-level total factor productivity in China," Journal of Asian Economics, Elsevier, vol. 90(C).
    13. Wang, Jiaxin & Zhao, Mu & Huang, Xiang & Song, Zilong & Sun, Di, 2024. "Supply chain diffusion mechanisms for AI applications: A perspective on audit pricing," International Review of Financial Analysis, Elsevier, vol. 93(C).
    14. Naude, Wim, 2019. "The race against the robots and the fallacy of the giant cheesecake: Immediate and imagined impacts of artificial intelligence," MERIT Working Papers 2019-005, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    15. Wang, Jianlong & Wang, Weilong & Liu, Yong & Wu, Haitao, 2023. "Can industrial robots reduce carbon emissions? Based on the perspective of energy rebound effect and labor factor flow in China," Technology in Society, Elsevier, vol. 72(C).
    16. Mutascu, Mihai, 2021. "Artificial intelligence and unemployment: New insights," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 653-667.
    17. Zhang, Xinchun & Sun, Murong & Liu, Jianxu & Xu, Aijia, 2024. "The nexus between industrial robot and employment in China: The effects of technology substitution and technology creation," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    18. Lei Xia & Qingjiang Han & Shui Yu, 2024. "RETRACTED ARTICLE: Sustainable manufacturing intelligence: pathways for high-quality and energy efficient economic growth," Economic Change and Restructuring, Springer, vol. 57(3), pages 1-30, June.
    19. Belloc, Filippo & Burdin, Gabriel & Landini, Fabio, 2020. "Robots and Worker Voice: An Empirical Exploration," IZA Discussion Papers 13799, Institute of Labor Economics (IZA).
    20. Gries, Thomas & Naude, Wim, 2018. "Artificial intelligence, jobs, inequality and productivity: Does aggregate demand matter?," MERIT Working Papers 2018-047, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).

    More about this item

    Keywords

    China sectors; Industry level; Industrial robots; Labour productivity;
    All these keywords.

    JEL classification:

    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ingrde:v:3:y:2024:i:2:s2949753124000250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/innovation-and-green-development .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.