[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v81y2019i4p797-816.html
   My bibliography  Save this article

Specification Searching and Significance Inflation Across Time, Methods and Disciplines

Author

Listed:
  • Eva Vivalt
Abstract
This paper examines how significance inflation has varied across time, methods and disciplines. Leveraging a unique data set of impact evaluations on 20 kinds of development programmes, I find that results from randomized controlled trials exhibit less significance inflation than results from studies using other methods. Further, randomized controlled trials have exhibited less significance inflation over time, but quasi‐experimental studies have not. There is no robust difference between results from researchers affiliated with economics departments and those from researchers affiliated with other predominantly health‐related departments. Overall, the biases found appear much smaller than those previously observed in other social sciences.

Suggested Citation

  • Eva Vivalt, 2019. "Specification Searching and Significance Inflation Across Time, Methods and Disciplines," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 81(4), pages 797-816, August.
  • Handle: RePEc:bla:obuest:v:81:y:2019:i:4:p:797-816
    DOI: 10.1111/obes.12289
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/obes.12289
    Download Restriction: no

    File URL: https://libkey.io/10.1111/obes.12289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Pütz & Stephan B. Bruns, 2021. "The (Non‐)Significance Of Reporting Errors In Economics: Evidence From Three Top Journals," Journal of Economic Surveys, Wiley Blackwell, vol. 35(1), pages 348-373, February.
    2. Abel Brodeur, Nikolai M. Cook, Anthony Heyes, 2022. "We Need to Talk about Mechanical Turk: What 22,989 Hypothesis Tests Tell Us about Publication Bias and p-Hacking in Online Experiments," LCERPA Working Papers am0133, Laurier Centre for Economic Research and Policy Analysis.
    3. Brodeur, Abel & Cook, Nikolai & Heyes, Anthony, 2022. "We Need to Talk about Mechanical Turk: What 22,989 Hypothesis Tests Tell us about p-Hacking and Publication Bias in Online Experiments," GLO Discussion Paper Series 1157, Global Labor Organization (GLO).
    4. Brodeur, Abel & Cook, Nikolai M. & Hartley, Jonathan S. & Heyes, Anthony, 2022. "Do Pre-Registration and Pre-analysis Plans Reduce p-Hacking and Publication Bias?," GLO Discussion Paper Series 1147, Global Labor Organization (GLO).
    5. Cristina Blanco-Perez & Abel Brodeur, 2020. "Publication Bias and Editorial Statement on Negative Findings," The Economic Journal, Royal Economic Society, vol. 130(629), pages 1226-1247.
    6. Graham Elliott & Nikolay Kudrin & Kaspar Wüthrich, 2022. "Detecting p‐Hacking," Econometrica, Econometric Society, vol. 90(2), pages 887-906, March.
    7. Abel Brodeur & Nikolai Cook & Carina Neisser, 2024. "p-Hacking, Data type and Data-Sharing Policy," The Economic Journal, Royal Economic Society, vol. 134(659), pages 985-1018.
    8. Abel Brodeur & Scott Carrell & David Figlio & Lester Lusher, 2023. "Unpacking P-hacking and Publication Bias," American Economic Review, American Economic Association, vol. 113(11), pages 2974-3002, November.
    9. Abel Brodeur & Nikolai M. Cook & Jonathan S. Hartley & Anthony Heyes, 2024. "Do Preregistration and Preanalysis Plans Reduce p-Hacking and Publication Bias? Evidence from 15,992 Test Statistics and Suggestions for Improvement," Journal of Political Economy Microeconomics, University of Chicago Press, vol. 2(3), pages 527-561.
    10. Bruns, Stephan B. & Ioannidis, John P.A., 2020. "Determinants of economic growth: Different time different answer?," Journal of Macroeconomics, Elsevier, vol. 63(C).
    11. Andrew C. Chang & Trace J. Levinson, 2020. "Raiders of the Lost High-Frequency Forecasts: New Data and Evidence on the Efficiency of the Fed's Forecasting," Finance and Economics Discussion Series 2020-090, Board of Governors of the Federal Reserve System (U.S.).
    12. Abel Brodeur & Nikolai Cook & Anthony Heyes, 2020. "Methods Matter: p-Hacking and Publication Bias in Causal Analysis in Economics," American Economic Review, American Economic Association, vol. 110(11), pages 3634-3660, November.
    13. Nathan Fiala & Ana Garcia-Hernandez & Kritika Narula & Nishith Prakash, 2022. "Wheels of Change: Transforming Girls' Lives with Bicycles," CESifo Working Paper Series 9865, CESifo.
    14. Anna Dreber & Magnus Johannesson & Yifan Yang, 2024. "Selective reporting of placebo tests in top economics journals," Economic Inquiry, Western Economic Association International, vol. 62(3), pages 921-932, July.
    15. Nathan Fiala & Ana Garcia-Hernandez & Kritika Narula & Nishith Prakash, 2022. "Wheels of Change: Transforming Girls’ Lives with Bicycles," Working papers 2022-04, University of Connecticut, Department of Economics.
    16. Graham Elliott & Nikolay Kudrin & Kaspar Wuthrich, 2022. "The Power of Tests for Detecting $p$-Hacking," Papers 2205.07950, arXiv.org, revised Apr 2024.
    17. Bruns, Stephan B. & Asanov, Igor & Bode, Rasmus & Dunger, Melanie & Funk, Christoph & Hassan, Sherif M. & Hauschildt, Julia & Heinisch, Dominik & Kempa, Karol & König, Johannes & Lips, Johannes & Verb, 2019. "Reporting errors and biases in published empirical findings: Evidence from innovation research," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    18. Eliot Abrams & Jonathan Libgober & John List, 2020. "Research Registries: Facts, Myths, and Possible Improvements," Artefactual Field Experiments 00703, The Field Experiments Website.
    19. Doucouliagos, Hristos & Hinz, Thomas & Zigova, Katarina, 2022. "Bias and careers: Evidence from the aid effectiveness literature," European Journal of Political Economy, Elsevier, vol. 71(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:81:y:2019:i:4:p:797-816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.