[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/zbw/bubdp1/201006.html
   My bibliography  Save this paper

Empirical simultaneous confidence regions for path-forecasts

Author

Listed:
  • Jordà, Òscar
  • Knüppel, Malte
  • Marcellino, Massimiliano
Abstract
Measuring and displaying uncertainty around path-forecasts, i.e. forecasts made in period T about the expected trajectory of a random variable in periods T+1 to T+H is a key ingredient for decision making under uncertainty. The probabilistic assessment about the set of possible trajectories that the variable may follow over time is summarized by the simultaneous confidence region generated from its forecast generating distribution. However, if the null model is only approximative or altogether unavailable, one cannot derive analytic expressions for this confidence region, and its non-parametric estimation is impractical given commonly available predictive sample sizes. Instead, this paper derives the approximate rectangular confidence regions that control false discovery rate error, which are a function of the predictive sample covariance matrix and the empirical distribution of the Mahalanobis distance of the path-forecast errors. These rectangular regions are simple to construct and appear to work well in a variety of cases explored empirically and by simulation. The proposed techniques are applied to provide confidence bands around the Fed and Bank of England real-time path-forecasts of growth and inflation.

Suggested Citation

  • Jordà, Òscar & Knüppel, Malte & Marcellino, Massimiliano, 2010. "Empirical simultaneous confidence regions for path-forecasts," Discussion Paper Series 1: Economic Studies 2010,06, Deutsche Bundesbank.
  • Handle: RePEc:zbw:bubdp1:201006
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/32454/1/625818881.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Anna Staszewska‐Bystrova, 2011. "Bootstrap prediction bands for forecast paths from vector autoregressive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(8), pages 721-735, December.
    2. Goldman, M Barry & Sosin, Howard B & Gatto, Mary Ann, 1979. "Path Dependent Options: "Buy at the Low, Sell at the High"," Journal of Finance, American Finance Association, vol. 34(5), pages 1111-1127, December.
    3. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    4. Òscar Jordà & Massimiliano Marcellino, 2010. "Path forecast evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 635-662.
    5. Masarotto, Guido, 1990. "Bootstrap prediction intervals for autoregressions," International Journal of Forecasting, Elsevier, vol. 6(2), pages 229-239, July.
    6. Jushan Bai & Serena Ng, 2005. "Tests for Skewness, Kurtosis, and Normality for Time Series Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 49-60, January.
    7. Margaret M. McConnell & Gabriel Perez-Quiros, 2000. "Output fluctuations in the United States: what has changed since the early 1980s?," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    8. Conze, Antoine & Viswanathan, 1991. "Path Dependent Options: The Case of Lookback Options," Journal of Finance, American Finance Association, vol. 46(5), pages 1893-1907, December.
    9. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423, September.
    10. Rubin Daniel & Dudoit Sandrine & van der Laan Mark, 2006. "A Method to Increase the Power of Multiple Testing Procedures Through Sample Splitting," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-20, August.
    11. Clements, Michael P. & Taylor, Nick, 2001. "Bootstrapping prediction intervals for autoregressive models," International Journal of Forecasting, Elsevier, vol. 17(2), pages 247-267.
    12. Lars E. O. Svensson, 2012. "Evaluating Monetary Policy," Book Chapters, in: Evan F. Koenig & Robert Leeson & George A. Kahn (ed.), The Taylor Rule and the Transformation of Monetary Policy, chapter 11, Hoover Institution, Stanford University.
    13. Lorenzo Pascual & Juan Romo & Esther Ruiz, 2004. "Bootstrap predictive inference for ARIMA processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(4), pages 449-465, July.
    14. Staszewska-Bystrova Anna, 2013. "Modified Scheffé’s Prediction Bands," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(5-6), pages 680-690, October.
    15. James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
    16. Michael Wolf & Dan Wunderli, 2012. "Bootstrap joint prediction regions," ECON - Working Papers 064, Department of Economics - University of Zurich, revised May 2013.
    17. Kim, Jae H., 1999. "Asymptotic and bootstrap prediction regions for vector autoregression," International Journal of Forecasting, Elsevier, vol. 15(4), pages 393-403, October.
    18. Staszewska-Bystrova, Anna & Winker, Peter, 2013. "Constructing narrowest pathwise bootstrap prediction bands using threshold accepting," International Journal of Forecasting, Elsevier, vol. 29(2), pages 221-233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kung, Ko-Lun & MacMinn, Richard D. & Kuo, Weiyu & Tsai, Chenghsien Jason, 2022. "Multi-population mortality modeling: When the data is too much and not enough," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 41-55.
    2. Sinclair, Tara M. & Stekler, H.O., 2013. "Examining the quality of early GDP component estimates," International Journal of Forecasting, Elsevier, vol. 29(4), pages 736-750.
    3. Tara M. Sinclair & H. O. Stekler & Warren Carnow, 2012. "A new approach for evaluating economic forecasts," Economics Bulletin, AccessEcon, vol. 32(3), pages 2332-2342.
    4. Svetlana Makarova, 2014. "Risk and Uncertainty: Macroeconomic Perspective," UCL SSEES Economics and Business working paper series 129, UCL School of Slavonic and East European Studies (SSEES).
    5. Hans Christian Müller-Dröge & Tara M. Sinclair & H.O. Stekler, 2014. "Evaluating Forecasts of a Vector of Variables: a German Forecasting Competition," CAMA Working Papers 2014-55, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    6. Ilhan Kilic & Faruk Balli, 2024. "Measuring economic country-specific uncertainty in Türkiye," Empirical Economics, Springer, vol. 67(4), pages 1649-1689, October.
    7. Hendry, David F. & Pretis, Felix, 2023. "Analysing differences between scenarios," International Journal of Forecasting, Elsevier, vol. 39(2), pages 754-771.
    8. Lee, Seohyun, 2017. "Three essays on uncertainty: real and financial effects of uncertainty shocks," MPRA Paper 83617, University Library of Munich, Germany.
    9. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    10. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    11. Sinclair, Tara M. & Stekler, H.O. & Carnow, Warren, 2015. "Evaluating a vector of the Fed’s forecasts," International Journal of Forecasting, Elsevier, vol. 31(1), pages 157-164.
    12. Filippeli, Thomai & Harrison, Richard & Theodoridis, Konstantinos, 2020. "DSGE-based priors for BVARs and quasi-Bayesian DSGE estimation," Econometrics and Statistics, Elsevier, vol. 16(C), pages 1-27.
    13. Knüppel, Malte, 2018. "Forecast-error-based estimation of forecast uncertainty when the horizon is increased," International Journal of Forecasting, Elsevier, vol. 34(1), pages 105-116.
    14. Tara M. Sinclair & H.O. Stekler, 2011. "Differences in Early GDP Component Estimates Between Recession and Expansion," Working Papers 2011-05, The George Washington University, Institute for International Economic Policy.
    15. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
    16. Thomai Filippeli, 2011. "Theoretical Priors for BVAR Models & Quasi-Bayesian DSGE Model Estimation," 2011 Meeting Papers 396, Society for Economic Dynamics.
    17. Diego Fresoli, 2022. "Bootstrap VAR forecasts: The effect of model uncertainties," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 279-293, March.
    18. Filippeli, Thomai & Harrison, Richard & Theodoridis, Konstantinos, 2018. "DSGE-based Priors for BVARs & Quasi-Bayesian DSGE Estimation," Cardiff Economics Working Papers E2018/5, Cardiff University, Cardiff Business School, Economics Section.
    19. Michael Wolf & Dan Wunderli, 2012. "Bootstrap joint prediction regions," ECON - Working Papers 064, Department of Economics - University of Zurich, revised May 2013.
    20. Veiga, Helena, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de Estadística.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jordà, Òscar & Knüppel, Malte & Marcellino, Massimiliano, 2013. "Empirical simultaneous prediction regions for path-forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 456-468.
    2. Fresoli, Diego & Ruiz, Esther & Pascual, Lorenzo, 2015. "Bootstrap multi-step forecasts of non-Gaussian VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 834-848.
    3. Diego Fresoli, 2022. "Bootstrap VAR forecasts: The effect of model uncertainties," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 279-293, March.
    4. Dag Kolsrud, 2015. "A Time‐Simultaneous Prediction Box for a Multivariate Time Series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(8), pages 675-693, December.
    5. Stefan Bruder, 2014. "Comparing several methods to compute joint prediction regions for path forecasts generated by vector autoregressions," ECON - Working Papers 181, Department of Economics - University of Zurich, revised Dec 2015.
    6. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
    7. repec:hum:wpaper:sfb649dp2014-007 is not listed on IDEAS
    8. repec:hum:wpaper:sfb649dp2013-031 is not listed on IDEAS
    9. Helmut Lütkepohl, 2010. "Forecasting Aggregated Time Series Variables: A Survey," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(2), pages 1-26.
    10. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2015. "Comparison of methods for constructing joint confidence bands for impulse response functions," International Journal of Forecasting, Elsevier, vol. 31(3), pages 782-798.
    11. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2020. "Constructing joint confidence bands for impulse response functions of VAR models – A review," Econometrics and Statistics, Elsevier, vol. 13(C), pages 69-83.
    12. Winker, Peter & Helmut, Lütkepohl & Staszewska-Bystrova, Anna, 2014. "Confidence Bands for Impulse Responses: Bonferroni versus Wald," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100597, Verein für Socialpolitik / German Economic Association.
    13. Anna Staszewska‐Bystrova, 2011. "Bootstrap prediction bands for forecast paths from vector autoregressive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(8), pages 721-735, December.
    14. Veiga, Helena, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Daniel Grabowski & Anna Staszewska-Bystrova & Peter Winker, 2020. "Skewness-adjusted bootstrap confidence intervals and confidence bands for impulse response functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 5-32, March.
    16. Staszewska-Bystrova, Anna & Winker, Peter, 2013. "Constructing narrowest pathwise bootstrap prediction bands using threshold accepting," International Journal of Forecasting, Elsevier, vol. 29(2), pages 221-233.
    17. João Henrique Gonçalves Mazzeu & Esther Ruiz & Helena Veiga, 2018. "Uncertainty And Density Forecasts Of Arma Models: Comparison Of Asymptotic, Bayesian, And Bootstrap Procedures," Journal of Economic Surveys, Wiley Blackwell, vol. 32(2), pages 388-419, April.
    18. Anna Staszewska-Bystrova, 2009. "Bootstrap Confidence Bands for Forecast Paths," Working Papers 024, COMISEF.
    19. Lynda Khalaf & Beatriz Peraza López, 2020. "Simultaneous Indirect Inference, Impulse Responses and ARMA Models," Econometrics, MDPI, vol. 8(2), pages 1-26, April.
    20. Fady Barsoum, 2015. "Point and Density Forecasts Using an Unrestricted Mixed-Frequency VAR Model," Working Paper Series of the Department of Economics, University of Konstanz 2015-19, Department of Economics, University of Konstanz.
    21. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    22. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.

    More about this item

    Keywords

    Path forecast; forecast uncertainty; simultaneous confidence region; Scheffé's S-method; Mahalanobis distance; false discovery rate;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bubdp1:201006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/dbbgvde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.