[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/sfu/sfudps/dp12-03.html
   My bibliography  Save this paper

Efficient Minimum Distance Estimation with Multiple Rates of Convergence

Author

Abstract
This paper extends the asymptotic theory of GMM inference to allow sample counterparts of the estimating equations to converge at (multiple) rates, different from the usual square-root of the sample size. In this setting, we provide consistent estimation of the structural parameters. In addition, we define a convenient rotation in the parameter space (or reparametrization) to disentangle the different rates of convergence. More precisely, we identify special linear combinations of the structural parameters associated with a specific rate of convergence. Finally, we demonstrate the validity of usual inference procedures, like the overidentification test and Wald test, with standard formulas. It is important to stress that both estimation and testing work without requiring the knowledge of the various rates. However, the assessment of these rates is crucial for (asymptotic) power considerations. Possible applications include econometric problems with two dimensions of asymptotics, due to trimming, tail estimation, infill asymptotic, social interactions, kernel smoothing or any kind of regularization.

Suggested Citation

  • Bertille Antoine & Eric Renault, 2012. "Efficient Minimum Distance Estimation with Multiple Rates of Convergence," Discussion Papers dp12-03, Department of Economics, Simon Fraser University.
  • Handle: RePEc:sfu:sfudps:dp12-03
    as

    Download full text from publisher

    File URL: http://www.sfu.ca/repec-econ/sfu/sfudps/dp12-03.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. P. Gagliardini & C. Gourieroux & E. Renault, 2011. "Efficient Derivative Pricing by the Extended Method of Moments," Econometrica, Econometric Society, vol. 79(4), pages 1181-1232, July.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Kotlyarova, Yulia & Zinde-Walsh, Victoria, 2006. "Non- and semi-parametric estimation in models with unknown smoothness," Economics Letters, Elsevier, vol. 93(3), pages 379-386, December.
    4. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(3), pages 560-586, June.
    5. Kitamura, Yuichi & Phillips, Peter C. B., 1997. "Fully modified IV, GIVE and GMM estimation with possibly non-stationary regressors and instruments," Journal of Econometrics, Elsevier, vol. 80(1), pages 85-123, September.
    6. Sargan, J D, 1983. "Identification and Lack of Identification," Econometrica, Econometric Society, vol. 51(6), pages 1605-1633, November.
    7. Hahn, Jinyong & Kuersteiner, Guido, 2002. "Discontinuities of weak instrument limiting distributions," Economics Letters, Elsevier, vol. 75(3), pages 325-331, May.
    8. Bandi, Federico M. & Phillips, Peter C.B., 2007. "A simple approach to the parametric estimation of potentially nonstationary diffusions," Journal of Econometrics, Elsevier, vol. 137(2), pages 354-395, April.
    9. Caner, Mehmet, 2008. "Nearly-singular design in GMM and generalized empirical likelihood estimators," Journal of Econometrics, Elsevier, vol. 144(2), pages 511-523, June.
    10. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, July.
    11. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
    12. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(2), pages 181-240, August.
    13. Yacine Aït-Sahalia & Jean Jacod, 2008. "Fisher's Information for Discretely Sampled Lévy Processes," Econometrica, Econometric Society, vol. 76(4), pages 727-761, July.
    14. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    15. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    16. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    17. Lee, Lung-fei, 2010. "Pooling Estimates With Different Rates Of Convergence: A Minimum Χ2 Approach With Emphasis On A Social Interactions Model," Econometric Theory, Cambridge University Press, vol. 26(1), pages 260-299, February.
    18. Joann Jasiak & Christian Gourieroux, 2006. "Autoregressive gamma processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 129-152.
    19. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
    20. Phillips, Peter C B & Park, Joon Y, 1988. "On the Formulation of Wald Tests of Nonlinear Restrictions," Econometrica, Econometric Society, vol. 56(5), pages 1065-1083, September.
    21. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    22. Bertille Antoine & Eric Renault, 2009. "Efficient GMM with nearly-weak instruments," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 135-171, January.
    23. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Inoue, Atsushi & Kilian, Lutz, 2016. "Joint confidence sets for structural impulse responses," Journal of Econometrics, Elsevier, vol. 192(2), pages 421-432.
    2. Guerron-Quintana, Pablo & Inoue, Atsushi & Kilian, Lutz, 2017. "Impulse response matching estimators for DSGE models," Journal of Econometrics, Elsevier, vol. 196(1), pages 144-155.
    3. David T. Frazierz & Eric Renault, 2016. "Efficient Two-Step Estimation via Targeting," CIRANO Working Papers 2016s-16, CIRANO.
    4. Hill, Jonathan B. & Aguilar, Mike, 2013. "Moment condition tests for heavy tailed time series," Journal of Econometrics, Elsevier, vol. 172(2), pages 255-274.
    5. Donna Feir & Thomas Lemieux & Vadim Marmer, 2016. "Weak Identification in Fuzzy Regression Discontinuity Designs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 185-196, April.
    6. Antoine, Bertille & Renault, Eric, 2024. "GMM with Nearly-Weak Identification," Econometrics and Statistics, Elsevier, vol. 30(C), pages 36-59.
    7. Simon Freyaldenhoven, 2017. "A Generalized Factor Model with Local Factors," 2017 Papers pfr361, Job Market Papers.
    8. Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
    9. Zhentao Shi & Huanhuan Zheng, 2018. "Structural estimation of behavioral heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(5), pages 690-707, August.
    10. Frazier, David T. & Renault, Eric, 2017. "Efficient two-step estimation via targeting," Journal of Econometrics, Elsevier, vol. 201(2), pages 212-227.
    11. Antoine, Bertille & Renault, Eric, 2020. "Testing identification strength," Journal of Econometrics, Elsevier, vol. 218(2), pages 271-293.
    12. Antoine, Bertille & Lavergne, Pascal, 2014. "Conditional moment models under semi-strong identification," Journal of Econometrics, Elsevier, vol. 182(1), pages 59-69.
    13. Gagliardini, Patrick & Ronchetti, Diego, 2013. "Semi-parametric estimation of American option prices," Journal of Econometrics, Elsevier, vol. 173(1), pages 57-82.
    14. Cheng, Xu, 2015. "Robust inference in nonlinear models with mixed identification strength," Journal of Econometrics, Elsevier, vol. 189(1), pages 207-228.
    15. Prosper Dovonon & Firmin Doko Tchatoka & Michael Aguessy, 2019. "Relevant moment selection under mixed identification strength," School of Economics and Public Policy Working Papers 2019-04, University of Adelaide, School of Economics and Public Policy.
    16. Chao, John C. & Swanson, Norman R. & Woutersen, Tiemen, 2023. "Jackknife estimation of a cluster-sample IV regression model with many weak instruments," Journal of Econometrics, Elsevier, vol. 235(2), pages 1747-1769.
    17. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    18. Leong, Soon Heng & Urga, Giovanni, 2023. "A practical multivariate approach to testing volatility spillover," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    19. Forneron, Jean-Jacques, 2024. "Detecting identification failure in moment condition models," Journal of Econometrics, Elsevier, vol. 238(1).
    20. Krogh, Tord S., 2015. "Macro frictions and theoretical identification of the New Keynesian Phillips curve," Journal of Macroeconomics, Elsevier, vol. 43(C), pages 191-204.
    21. Chaudhuri, Saraswata & Renault, Eric, 2020. "Score tests in GMM: Why use implied probabilities?," Journal of Econometrics, Elsevier, vol. 219(2), pages 260-280.
    22. Antoine, Bertille & Boldea, Otilia, 2018. "Efficient estimation with time-varying information and the New Keynesian Phillips Curve," Journal of Econometrics, Elsevier, vol. 204(2), pages 268-300.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Xu, 2015. "Robust inference in nonlinear models with mixed identification strength," Journal of Econometrics, Elsevier, vol. 189(1), pages 207-228.
    2. Xu Cheng, 2014. "Uniform Inference in Nonlinear Models with Mixed Identification Strength," PIER Working Paper Archive 14-018, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    3. Bertille Antoine & Eric Renault, 2012. "Efficient Inference with Poor Instruments: a General Framework," Discussion Papers dp12-04, Department of Economics, Simon Fraser University.
    4. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    5. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    6. Antoine, Bertille & Renault, Eric, 2020. "Testing identification strength," Journal of Econometrics, Elsevier, vol. 218(2), pages 271-293.
    7. Antoine, Bertille & Renault, Eric, 2024. "GMM with Nearly-Weak Identification," Econometrics and Statistics, Elsevier, vol. 30(C), pages 36-59.
    8. Isaiah Andrews & Anna Mikusheva, 2016. "Conditional Inference With a Functional Nuisance Parameter," Econometrica, Econometric Society, vol. 84, pages 1571-1612, July.
    9. Frank Kleibergen, 2004. "Expansions of GMM statistics that indicate their properties under weak and/or many instruments and the bootstrap," Econometric Society 2004 North American Summer Meetings 408, Econometric Society.
    10. David T. Frazier & Eric Renault & Lina Zhang & Xueyan Zhao, 2020. "Weak Identification in Discrete Choice Models," Papers 2011.06753, arXiv.org, revised Jan 2021.
    11. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.
    12. Bertille Antoine & Otilia Boldea, 2014. "Efficient Inference with Time-Varying Identification Strength," Discussion Papers dp14-03, Department of Economics, Simon Fraser University.
    13. Dovonon, Prosper & Renault, Eric, 2011. "Testing for Common GARCH Factors," MPRA Paper 40224, University Library of Munich, Germany.
    14. Bertille Antoine & Otilia Boldea, 2015. "Efficient Inference with Time-Varying Information and the New Keynesian Phillips Curve," Discussion Papers dp15-04, Department of Economics, Simon Fraser University, revised 25 Aug 2016.
    15. Andrews, Donald W.K. & Cheng, Xu, 2013. "Maximum likelihood estimation and uniform inference with sporadic identification failure," Journal of Econometrics, Elsevier, vol. 173(1), pages 36-56.
    16. Arellano, Manuel & Hansen, Lars Peter & Sentana, Enrique, 2012. "Underidentification?," Journal of Econometrics, Elsevier, vol. 170(2), pages 256-280.
    17. Benoit Perron, 2003. "Semiparametric Weak-Instrument Regressions with an Application to the Risk-Return Tradeoff," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 424-443, May.
    18. Andrews, Donald W.K. & Cheng, Xu, 2014. "Gmm Estimation And Uniform Subvector Inference With Possible Identification Failure," Econometric Theory, Cambridge University Press, vol. 30(2), pages 287-333, April.
    19. Guggenberger, Patrik & Smith, Richard J., 2005. "Generalized Empirical Likelihood Estimators And Tests Under Partial, Weak, And Strong Identification," Econometric Theory, Cambridge University Press, vol. 21(4), pages 667-709, August.
    20. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2005. "Bias Corrected Instrumental Variables Estimation for Dynamic Panel Models with Fixed E¤ects," Boston University - Department of Economics - Working Papers Series WP2005-024, Boston University - Department of Economics.
    21. Dovonon, Prosper & Hall, Alastair R. & Kleibergen, Frank, 2020. "Inference in second-order identified models," Journal of Econometrics, Elsevier, vol. 218(2), pages 346-372.

    More about this item

    Keywords

    GMM; Mixed-rates asymptotics; Kernel estimation; Rotation in the coordinate system;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sfu:sfudps:dp12-03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Working Paper Coordinator (email available below). General contact details of provider: https://edirc.repec.org/data/desfuca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.