[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/oxf/wpaper/983.html
   My bibliography  Save this paper

The historical role of energy in UK inflation and productivity and implications for price inflation in 2022

Author

Listed:
  • Jennifer L. Castle
  • David F. Hendry
  • Andrew B. Martinez
Abstract
We model UK price and wage inflation, productivity and unemployment over a century and a half of data, selecting dynamics, relevant variables, non-linearities and location and trend shifts us¬ing indicator saturation estimation. The four congruent econometric equations highlight complex interacting empirical relations. The production function reveals a major role for energy inputs ad-ditional to capital and labour, and although the price inflation equation shows a small direct impact of energy prices, the substantial rise in oil and gas prices seen by mid-2022 contribute half of the increase in price inflation. We find empirical evidence for non-linear adjustments of real wages to inflation: a wage-price spiral kicks in when inflation exceeds about 6–8% p.a. We also find an addi-tional non-linear reaction to unemployment, consistent with involuntary unemployment. A reduction in energy availability simultaneously reduces output and exacerbates inflation.

Suggested Citation

  • Jennifer L. Castle & David F. Hendry & Andrew B. Martinez, 2022. "The historical role of energy in UK inflation and productivity and implications for price inflation in 2022," Economics Series Working Papers 983, University of Oxford, Department of Economics.
  • Handle: RePEc:oxf:wpaper:983
    as

    Download full text from publisher

    File URL: https://ora.ox.ac.uk/objects/uuid:95180014-1bb8-400c-b1c1-83b8899699b6
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Brian Chi-ang Lin & Siqi Zheng & Felix Pretis & Lea Schneider & Jason E. Smerdon & David F. Hendry, 2016. "Detecting Volcanic Eruptions In Temperature Reconstructions By Designed Break-Indicator Saturation," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 403-429, July.
    2. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.
    3. Galí, Jordi & Gertler, Mark, 1999. "Inflation Dynamics: A Structural Economic Analysis," CEPR Discussion Papers 2246, C.E.P.R. Discussion Papers.
    4. David H. Bernstein & Andrew B. Martinez, 2021. "Jointly Modeling Male and Female Labor Participation and Unemployment," Econometrics, MDPI, vol. 9(4), pages 1-14, December.
    5. Castle, Jennifer L. & Hendry, David F., 2010. "A low-dimension portmanteau test for non-linearity," Journal of Econometrics, Elsevier, vol. 158(2), pages 231-245, October.
    6. David F. Hendry, 2001. "Modelling UK inflation, 1875-1991," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 255-275.
    7. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    8. David F Hendry & John N J Muellbauer, 2018. "The future of macroeconomics: macro theory and models at the Bank of England," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 34(1-2), pages 287-328.
    9. Carlos Santos & David Hendry & Soren Johansen, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 317-335, April.
    10. Jennifer L. Castle & David F. Hendry, 2021. "Can the UK achieve net-zero greenhouse gas emissions by 2050?," Economics Series Working Papers 953 JEL classification: C, University of Oxford, Department of Economics.
    11. Hendry, David F., 1995. "Dynamic Econometrics," OUP Catalogue, Oxford University Press, number 9780198283164.
    12. Jurgen A. Doornik & Henrik Hansen, 2008. "An Omnibus Test for Univariate and Multivariate Normality," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 927-939, December.
    13. Engle, Robert F. & Hendry, David F., 1993. "Testing superexogeneity and invariance in regression models," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 119-139, March.
    14. Ricardo Reis, 2006. "Inattentive Producers," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(3), pages 793-821.
    15. Jennifer L. Castle & Michael P. Clements & David F. Hendry, 2016. "An Overview of Forecasting Facing Breaks," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(1), pages 3-23, September.
    16. James A. Duffy & David F. Hendry, 2017. "The impact of integrated measurement errors on modeling long-run macroeconomic time series," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 568-587, October.
    17. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    18. Castle, Jennifer L. & Hendry, David F., 2009. "The long-run determinants of UK wages, 1860-2004," Journal of Macroeconomics, Elsevier, vol. 31(1), pages 5-28, March.
    19. Hendry, David F. & Johansen, Søren, 2015. "Model Discovery And Trygve Haavelmo’S Legacy," Econometric Theory, Cambridge University Press, vol. 31(1), pages 93-114, February.
    20. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry & Felix Pretis, 2015. "Detecting Location Shifts during Model Selection by Step-Indicator Saturation," Econometrics, MDPI, vol. 3(2), pages 1-25, April.
    21. Neil R. Ericsson & David F. Hendry & Kevin M. Prestwich, 1998. "The Demand for Broad Money in the United Kingdom, 1878–1993," Scandinavian Journal of Economics, Wiley Blackwell, vol. 100(1), pages 289-324, March.
    22. Boyer, George R. & Hatton, Timothy J., 2002. "New Estimates Of British Unemployment, 1870–1913," The Journal of Economic History, Cambridge University Press, vol. 62(3), pages 643-675, September.
    23. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry & Ragnar Nymoen, 2014. "Misspecification Testing: Non-Invariance of Expectations Models of Inflation," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 553-574, August.
    24. Godfrey, Leslie G, 1978. "Testing for Higher Order Serial Correlation in Regression Equations When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1303-1310, November.
    25. Hendry, David F & Ericsson, Neil R, 1991. "An Econometric Analysis of U.K. Money Demand in 'Monetary Trends in the United States and the United Kingdom' by Milton Friedman and Anna Schwartz," American Economic Review, American Economic Association, vol. 81(1), pages 8-38, March.
    26. David Hendry & Carlos Santos, 2010. "An Automatic Test of Super Exogeneity," Economics Series Working Papers 476, University of Oxford, Department of Economics.
    27. Gali, Jordi & Gertler, Mark, 1999. "Inflation dynamics: A structural econometric analysis," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 195-222, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2024. "Improving models and forecasts after equilibrium-mean shifts," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1085-1100.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castle, Jennifer L. & Hendry, David F. & Martinez, Andrew B., 2023. "The historical role of energy in UK inflation and productivity with implications for price inflation," Energy Economics, Elsevier, vol. 126(C).
    2. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    3. Jennifer Castle & David Hendry, 2013. "Semi-automatic Non-linear Model selection," Economics Series Working Papers 654, University of Oxford, Department of Economics.
    4. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2021. "Modelling non-stationary ‘Big Data’," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1556-1575.
    5. Andrew B. Martinez, 2020. "Forecast Accuracy Matters for Hurricane Damage," Econometrics, MDPI, vol. 8(2), pages 1-24, May.
    6. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2023. "Robust Discovery of Regression Models," Econometrics and Statistics, Elsevier, vol. 26(C), pages 31-51.
    7. Ericsson Neil R., 2016. "Testing for and estimating structural breaks and other nonlinearities in a dynamic monetary sector," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 377-398, September.
    8. David F. Hendry, 2020. "A Short History of Macro-econometric Modelling," Economics Papers 2020-W01, Economics Group, Nuffield College, University of Oxford.
    9. Stillwagon, Josh R., 2016. "Non-linear exchange rate relationships: An automated model selection approach with indicator saturation," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 84-109.
    10. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry & Ragnar Nymoen, 2014. "Misspecification Testing: Non-Invariance of Expectations Models of Inflation," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 553-574, August.
    11. Jennifer Castle & Takamitsu Kurita, 2019. "Modelling and forecasting the dollar-pound exchange rate in the presence of structural breaks," Economics Series Working Papers 866, University of Oxford, Department of Economics.
    12. David F. Hendry, 2020. "First in, First out: Econometric Modelling of UK Annual CO_2 Emissions, 1860–2017," Economics Papers 2020-W02, Economics Group, Nuffield College, University of Oxford.
    13. Castle, Jennifer L. & Hendry, David F., 2009. "The long-run determinants of UK wages, 1860-2004," Journal of Macroeconomics, Elsevier, vol. 31(1), pages 5-28, March.
    14. Hendry, David F., 2018. "Deciding between alternative approaches in macroeconomics," International Journal of Forecasting, Elsevier, vol. 34(1), pages 119-135.
    15. Jurgen A. Doornik & David F. Hendry & Steve Cook, 2015. "Statistical model selection with “Big Data”," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1045216-104, December.
    16. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    17. Ericsson, Neil R., 2017. "How biased are U.S. government forecasts of the federal debt?," International Journal of Forecasting, Elsevier, vol. 33(2), pages 543-559.
    18. Castle, Jennifer L. & Kurita, Takamitsu, 2021. "A dynamic econometric analysis of the dollar-pound exchange rate in an era of structural breaks and policy regime shifts," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    19. David F. Hendry & Felix Pretis, 2013. "Anthropogenic influences on atmospheric CO2," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 12, pages 287-326, Edward Elgar Publishing.
    20. Kurita, Takamitsu, 2011. "An empirical model for Japan's business fixed investment," Journal of Economics and Business, Elsevier, vol. 63(2), pages 107-120, March.

    More about this item

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anne Pouliquen (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.