[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/479.html
   My bibliography  Save this paper

A degree-distance-based connections model with negative and positive externalities

Author

Listed:
  • Moehlmeier, Philipp

    (Center for Mathematical Economics, Bielefeld University)

  • Rusinowska, Agnieszka

    (Center for Mathematical Economics, Bielefeld University)

  • Tanimura, Emily

    (Center for Mathematical Economics, Bielefeld University)

Abstract
We develop a modification of the connections model by Jackson and Wolinsky (1996)that takes into account negative externalities arising from the connectivity of direct and indirect neighbors, thus combining aspects of the connections model and the co-author model. We consider a general functional form for agents’ utility that incorporates both the effects of distance and of neighbors’ degree. Consequently, we introduce a framework that can be seen as a degree-distancebased connections model with both negative and positive externalities. Our analysis shows how the introduction of negative externalities modifies certain results about stability and efficiency compared to the original connections model. In particular, we see the emergence of new stable structures, such as a star with links between peripheral nodes. We also identify structures, for example, certain disconnected networks, that are efficient in our model but which could not be efficient in the original connections model. While our results are proved for the general utility function, some of them are illustrated by using a specific functional form of the degree-distancebased utility.

Suggested Citation

  • Moehlmeier, Philipp & Rusinowska, Agnieszka & Tanimura, Emily, 2014. "A degree-distance-based connections model with negative and positive externalities," Center for Mathematical Economics Working Papers 479, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:479
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/2674096/2901850
    File Function: First Version, 2013
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Galeotti, Andrea & Goyal, Sanjeev & Kamphorst, Jurjen, 2006. "Network formation with heterogeneous players," Games and Economic Behavior, Elsevier, vol. 54(2), pages 353-372, February.
    2. Thomas Lux & Eleni Samanidou & Stefan Reitz (ed.), 2005. "Nonlinear Dynamics and Heterogeneous Interacting Agents," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-27296-0, October.
    3. Pascal Billand & Christophe Bravard & Sudipta Sarangi, 2012. "Directed Networks with Spillovers," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 14(6), pages 849-878, December.
    4. Matthew O. Jackson & Brian W. Rogers, 2005. "The Economics of Small Worlds," Journal of the European Economic Association, MIT Press, vol. 3(2-3), pages 617-627, 04/05.
    5. Robert P. Gilles & Cathleen Johnson, 2000. "original papers : Spatial social networks," Review of Economic Design, Springer;Society for Economic Design, vol. 5(3), pages 273-299.
    6. Dutta, Bhaskar & Mutuswami, Suresh, 1997. "Stable Networks," Journal of Economic Theory, Elsevier, vol. 76(2), pages 322-344, October.
      • Dutta, Bhaskar & Mutuswami, Suresh, 1996. "Stable Networks," Working Papers 971, California Institute of Technology, Division of the Humanities and Social Sciences.
    7. Sergio Currarini, 2007. "Network design in games with spillovers," Review of Economic Design, Springer;Society for Economic Design, vol. 10(4), pages 305-326, March.
    8. Jackson, Matthew O. & van den Nouweland, Anne, 2005. "Strongly stable networks," Games and Economic Behavior, Elsevier, vol. 51(2), pages 420-444, May.
    9. Berno Buechel & Tim Hellmann, 2012. "Under-connected and over-connected networks: the role of externalities in strategic network formation," Review of Economic Design, Springer;Society for Economic Design, vol. 16(1), pages 71-87, March.
    10. Haller, Hans & Sarangi, Sudipta, 2005. "Nash networks with heterogeneous links," Mathematical Social Sciences, Elsevier, vol. 50(2), pages 181-201, September.
    11. Demange,Gabrielle & Wooders,Myrna (ed.), 2005. "Group Formation in Economics," Cambridge Books, Cambridge University Press, number 9780521842716, September.
    12. Pascal Billand & Christophe Bravard & Sudipta Sarangi, 2012. "On the interaction between heterogeneity and decay in two-way flow models," Theory and Decision, Springer, vol. 73(4), pages 525-538, October.
    13. Carayol, Nicolas & Roux, Pascale, 2009. "Knowledge flows and the geography of networks: A strategic model of small world formation," Journal of Economic Behavior & Organization, Elsevier, vol. 71(2), pages 414-427, August.
    14. Pascal Billand & Christophe Bravard & Sudipta Sarangi, 2011. "Local Spillovers, Convexity and the Strategic Substitutes Property in Networks," Working Papers 1110, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    15. K. de Jaegher & J.J.A. Kamphorst, 2009. "Two-way Flow Networks with Small Decay," Working Papers 09-34, Utrecht School of Economics.
    16. Hojman, Daniel A. & Szeidl, Adam, 2008. "Core and periphery in networks," Journal of Economic Theory, Elsevier, vol. 139(1), pages 295-309, March.
    17. Sanjeev Goyal & Sumit Joshi, 2006. "Unequal connections," International Journal of Game Theory, Springer;Game Theory Society, vol. 34(3), pages 319-349, October.
    18. Matthew O. Jackson & Bhaskar Dutta, 2000. "original papers : The stability and efficiency of directed communication networks," Review of Economic Design, Springer;Society for Economic Design, vol. 5(3), pages 251-272.
    19. Tim Hellmann, 2013. "On the existence and uniqueness of pairwise stable networks," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(1), pages 211-237, February.
    20. Jackson, Matthew O. & Watts, Alison, 2002. "The Evolution of Social and Economic Networks," Journal of Economic Theory, Elsevier, vol. 106(2), pages 265-295, October.
    21. Gabrielle Demange & Wooders Myrna, 2005. "Group Formation in Economics: Networks, Clubs and Coalitions," Post-Print halshs-00576778, HAL.
    22. Watts, Alison, 2001. "A Dynamic Model of Network Formation," Games and Economic Behavior, Elsevier, vol. 34(2), pages 331-341, February.
    23. Tim Hellmann & Berno Buechel, 2009. "Under-connected and Over-connected Networks," Working Papers 2009.38, Fondazione Eni Enrico Mattei.
    24. Thayer Morrill, 2011. "Network formation under negative degree-based externalities," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 367-385, May.
    25. Haller, Hans, 2012. "Network extension," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 166-172.
    26. Watts, Alison, 2002. "Non-myopic formation of circle networks," Economics Letters, Elsevier, vol. 74(2), pages 277-282, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Foerster, Manuel & Mauleon, Ana & Vannetelbosch, Vincent J., 2021. "Shadow links," Journal of Economic Theory, Elsevier, vol. 197(C).
      • FOERSTER Manuel, & MAULEON Ana, & VANNETELBOSCH Vincent,, 2018. "Shadow links," LIDAM Discussion Papers CORE 2018030, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Foerster, Manuel & Mauleon, Ana & Vannetelbosch, Vincent, 2021. "Shadow links," LIDAM Reprints CORE 3171, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Hellmann, Tim & Staudigl, Mathias, 2014. "Evolution of social networks," European Journal of Operational Research, Elsevier, vol. 234(3), pages 583-596.
    3. Antoine Mandel & Xavier Venel, 2022. "Sequential competition and the strategic origins of preferential attachment," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(3), pages 483-508, November.
    4. László Á. Kóczy, 2022. "Core-stability over networks with widespread externalities," Annals of Operations Research, Springer, vol. 318(2), pages 1001-1027, November.
    5. Möhlmeier, Philipp & Rusinowska, Agnieszka & Tanimura, Emily, 2018. "Competition for the access to and use of information in networks," Mathematical Social Sciences, Elsevier, vol. 92(C), pages 48-63.
    6. Mohsen Mosleh & Peter Ludlow & Babak Heydari, 2016. "Distributed Resource Management in Systems of Systems: An Architecture Perspective," Systems Engineering, John Wiley & Sons, vol. 19(4), pages 362-374, July.
    7. Chenghong Luo & Ana Mauleon & Vincent Vannetelbosch, 2021. "Network formation with myopic and farsighted players," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(4), pages 1283-1317, June.
    8. Pramod C. Mane & Nagarajan Krishnamurthy & Kapil Ahuja, 2019. "Formation of Stable and Efficient Social Storage Cloud," Games, MDPI, vol. 10(4), pages 1-17, November.
    9. Jan-Peter Siedlarek, 2023. "Making friends meet: network formation with introductions," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(4), pages 1037-1076, December.
    10. Somayeh Koohborfardhaghighi & Jörn Altmann, 2015. "A Network Formation Model for Social Object Networks," Springer Books, in: Zhenji Zhang & Zuojun Max Shen & Juliang Zhang & Runtong Zhang (ed.), Liss 2014, edition 127, pages 615-625, Springer.
    11. Ping Sun & Elena Parilina, 2024. "Networks with nonordered partitioning of players: stability and efficiency with neighborhood-influenced cost topology," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 99(3), pages 271-305, June.
    12. Adriani, Fabrizio & Ladley, Dan, 2021. "Social distance, speed of containment and crowding in/out in a network model of contagion," Journal of Economic Behavior & Organization, Elsevier, vol. 190(C), pages 597-625.
    13. Pramod C. Mane & Nagarajan Krishnamurthy & Kapil Ahuja, 2023. "Resource availability in the social cloud: An economics perspective," Bulletin of Economic Research, Wiley Blackwell, vol. 75(2), pages 541-566, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hellmann, Tim & Staudigl, Mathias, 2014. "Evolution of social networks," European Journal of Operational Research, Elsevier, vol. 234(3), pages 583-596.
    2. Joost Vandenbossche & Thomas Demuynck, 2013. "Network Formation with Heterogeneous Agents and Absolute Friction," Computational Economics, Springer;Society for Computational Economics, vol. 42(1), pages 23-45, June.
    3. Jean-François Caulier & Michel Grabisch & Agnieszka Rusinowska, 2015. "An allocation rule for dynamic random network formation processes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 283-313, October.
    4. Herings, P. Jean-Jacques & Mauleon, Ana & Vannetelbosch, Vincent, 2009. "Farsightedly stable networks," Games and Economic Behavior, Elsevier, vol. 67(2), pages 526-541, November.
    5. Safi, Shahir, 2022. "Listen before you link: Optimal monitoring rules for communication networks," Games and Economic Behavior, Elsevier, vol. 133(C), pages 230-247.
    6. Rohith D. Vallam & C.A. Subramanian & Ramasuri Narayanam & Y. Narahari & N. Srinath, 2014. "Strategic Network Formation with Localized Pay-offs," Studies in Microeconomics, , vol. 2(1), pages 63-119, June.
    7. Erol, Selman & Vohra, Rakesh, 2022. "Relationship externalities," Journal of Economic Theory, Elsevier, vol. 206(C).
    8. Sommarat Chantarat & Christopher Barrett, 2012. "Social network capital, economic mobility and poverty traps," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 10(3), pages 299-342, September.
    9. Yasunori Okumura, 2012. "Spatial competition and collaboration networks," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(3), pages 455-472, August.
    10. Chenghong Luo & Ana Mauleon & Vincent Vannetelbosch, 2021. "Network formation with myopic and farsighted players," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(4), pages 1283-1317, June.
    11. Möhlmeier, Philipp & Rusinowska, Agnieszka & Tanimura, Emily, 2018. "Competition for the access to and use of information in networks," Mathematical Social Sciences, Elsevier, vol. 92(C), pages 48-63.
    12. Berno Buechel & Tim Hellmann, 2012. "Under-connected and over-connected networks: the role of externalities in strategic network formation," Review of Economic Design, Springer;Society for Economic Design, vol. 16(1), pages 71-87, March.
    13. Matthew O. Jackson & Brian W. Rogers & Yves Zenou, 2016. "Networks: An Economic Perspective," Papers 1608.07901, arXiv.org.
    14. Schuster, Stephan, 2010. "Network Formation with Adaptive Agents," MPRA Paper 27388, University Library of Munich, Germany.
    15. Thayer Morrill, 2011. "Network formation under negative degree-based externalities," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 367-385, May.
    16. D'Ignazio, A. & Giovannetti, E., 2004. "From Exogenous to Endogenous Networks: Internet Applications," Cambridge Working Papers in Economics 0445, Faculty of Economics, University of Cambridge.
    17. Galeotti, Andrea & Goyal, Sanjeev & Kamphorst, Jurjen, 2006. "Network formation with heterogeneous players," Games and Economic Behavior, Elsevier, vol. 54(2), pages 353-372, February.
    18. Jackson, Matthew O. & van den Nouweland, Anne, 2005. "Strongly stable networks," Games and Economic Behavior, Elsevier, vol. 51(2), pages 420-444, May.
    19. Page, Frank Jr. & Wooders, Myrna H. & Kamat, Samir, 2005. "Networks and farsighted stability," Journal of Economic Theory, Elsevier, vol. 120(2), pages 257-269, February.
    20. Hans Haller & Jurjen Kamphorst & Sudipta Sarangi, 2007. "(Non-)existence and Scope of Nash Networks," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 31(3), pages 597-604, June.

    More about this item

    Keywords

    efficiency; pairwise stability; positive externalities; negative externalities; distance; degree; connections model;
    All these keywords.

    JEL classification:

    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation
    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bettina Weingarten (email available below). General contact details of provider: https://edirc.repec.org/data/imbiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.