[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1912.06320.html
   My bibliography  Save this paper

Synthetic Control Inference for Staggered Adoption: Estimating the Dynamic Effects of Board Gender Diversity Policies

Author

Listed:
  • Jianfei Cao
  • Shirley Lu
Abstract
We introduce a synthetic control methodology to study policies with staggered adoption. Many policies, such as the board gender quota, are replicated by other policy setters at different time frames. Our method estimates the dynamic average treatment effects on the treated using variation introduced by the staggered adoption of policies. Our method gives asymptotically unbiased estimators of many interesting quantities and delivers asymptotically valid inference. By using the proposed method and national labor data in Europe, we find evidence that quota regulation on board diversity leads to a decrease in part-time employment, and an increase in full-time employment for female professionals.

Suggested Citation

  • Jianfei Cao & Shirley Lu, 2019. "Synthetic Control Inference for Staggered Adoption: Estimating the Dynamic Effects of Board Gender Diversity Policies," Papers 1912.06320, arXiv.org.
  • Handle: RePEc:arx:papers:1912.06320
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1912.06320
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. W. K. Andrews, 2003. "End-of-Sample Instability Tests," Econometrica, Econometric Society, vol. 71(6), pages 1661-1694, November.
    2. Kenneth R. Ahern & Amy K. Dittmar, 2012. "The Changing of the Boards: The Impact on Firm Valuation of Mandated Female Board Representation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(1), pages 137-197.
    3. Jianfei Cao & Connor Dowd, 2019. "Estimation and Inference for Synthetic Control Methods with Spillover Effects," Papers 1902.07343, arXiv.org, revised Nov 2019.
    4. Seierstad, Cathrine & Opsahl, Tore, 2011. "For the few not the many? The effects of affirmative action on presence, prominence, and social capital of women directors in Norway," Scandinavian Journal of Management, Elsevier, vol. 27(1), pages 44-54, March.
    5. Brantly Callaway & Pedro H. C. Sant'Anna, 2018. "Difference-in-Differences with Multiple Time Periods and an Application on the Minimum Wage and Employment," DETU Working Papers 1804, Department of Economics, Temple University.
    6. Eduardo Cavallo & Sebastian Galiani & Ilan Noy & Juan Pantano, 2013. "Catastrophic Natural Disasters and Economic Growth," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1549-1561, December.
    7. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    8. Andrews, Donald W.K. & Kim, Jae-Young, 2006. "Tests for Cointegration Breakdown Over a Short Time Period," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 379-394, October.
    9. Firpo Sergio & Possebom Vitor, 2018. "Synthetic Control Method: Inference, Sensitivity Analysis and Confidence Sets," Journal of Causal Inference, De Gruyter, vol. 6(2), pages 1-26, September.
    10. Michael W. Robbins & Jessica Saunders & Beau Kilmer, 2017. "A Framework for Synthetic Control Methods With High-Dimensional, Micro-Level Data: Evaluating a Neighborhood-Specific Crime Intervention," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 109-126, January.
    11. Cristian L. Dezsö & David Gaddis Ross, 2012. "Does female representation in top management improve firm performance? A panel data investigation," Strategic Management Journal, Wiley Blackwell, vol. 33(9), pages 1072-1089, September.
    12. Sun, Liyang & Abraham, Sarah, 2021. "Estimating dynamic treatment effects in event studies with heterogeneous treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 175-199.
    13. Andrew Goodman-Bacon, 2018. "Difference-in-Differences with Variation in Treatment Timing," NBER Working Papers 25018, National Bureau of Economic Research, Inc.
    14. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    15. Peter Hull, 2018. "Estimating Treatment Effects in Mover Designs," Papers 1804.06721, arXiv.org.
    16. Noémi Kreif & Richard Grieve & Dominik Hangartner & Alex James Turner & Silviya Nikolova & Matt Sutton, 2016. "Examination of the Synthetic Control Method for Evaluating Health Policies with Multiple Treated Units," Health Economics, John Wiley & Sons, Ltd., vol. 25(12), pages 1514-1528, December.
    17. Xu, Yiqing, 2017. "Generalized Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models," Political Analysis, Cambridge University Press, vol. 25(1), pages 57-76, January.
    18. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    19. Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2018. "A $t$-test for synthetic controls," Papers 1812.10820, arXiv.org, revised Jan 2024.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eli Ben‐Michael & Avi Feller & Jesse Rothstein, 2022. "Synthetic controls with staggered adoption," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 351-381, April.
    2. Youngho Kim, 2024. "Payments for Ecosystem Services Programs and Climate Change Adaptation in Agriculture," Economics Series Working Papers 1054, University of Oxford, Department of Economics.
    3. repec:ags:aaea22:335971 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eli Ben‐Michael & Avi Feller & Jesse Rothstein, 2022. "Synthetic controls with staggered adoption," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 351-381, April.
    2. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    3. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    4. Andrii Melnychuk, 2024. "Synthetic Controls with spillover effects: A comparative study," Papers 2405.01645, arXiv.org.
    5. Kirill Borusyak & Xavier Jaravel & Jann Spiess, 2021. "Revisiting Event Study Designs: Robust and Efficient Estimation," Papers 2108.12419, arXiv.org, revised Jan 2024.
    6. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    7. David Gilchrist & Thomas Emery & Nuno Garoupa & Rok Spruk, 2023. "Synthetic Control Method: A tool for comparative case studies in economic history," Journal of Economic Surveys, Wiley Blackwell, vol. 37(2), pages 409-445, April.
    8. Bruno Ferman & Cristine Pinto, 2021. "Synthetic controls with imperfect pretreatment fit," Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
    9. Damian Clarke & Kathya Tapia-Schythe, 2021. "Implementing the panel event study," Stata Journal, StataCorp LP, vol. 21(4), pages 853-884, December.
    10. Hao, Shiming, 2021. "True structure change, spurious treatment effect? A novel approach to disentangle treatment effects from structure changes," MPRA Paper 108679, University Library of Munich, Germany.
    11. Clément de Chaisemartin & Xavier D'Haultfœuille, 2020. "Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects," American Economic Review, American Economic Association, vol. 110(9), pages 2964-2996, September.
    12. Kurt Schmidheiny & Sebastian Siegloch, 2023. "On event studies and distributed‐lags in two‐way fixed effects models: Identification, equivalence, and generalization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 695-713, August.
    13. Tomasz Serwach, 2022. "The European Union and within-country income inequalities. The case of the New Member States," Working Papers hal-03548416, HAL.
    14. Rösner, Anja & Haucap, Justus & Heimeshoff, Ulrich, 2020. "The impact of consumer protection in the digital age: Evidence from the European Union," International Journal of Industrial Organization, Elsevier, vol. 73(C).
    15. Giovanni Peri & Derek Rury & Justin C. Wiltshire, 2024. "The Economic Impact of Migrants from Hurricane Maria," Journal of Human Resources, University of Wisconsin Press, vol. 59(6), pages 1795-1829.
    16. Giulio Grossi & Marco Mariani & Alessandra Mattei & Patrizia Lattarulo & Ozge Oner, 2020. "Direct and spillover effects of a new tramway line on the commercial vitality of peripheral streets. A synthetic-control approach," Papers 2004.05027, arXiv.org, revised Nov 2023.
    17. Tal Gross & Raymond Kluender & Feng Liu & Matthew J. Notowidigdo & Jialan Wang, 2021. "The Economic Consequences of Bankruptcy Reform," American Economic Review, American Economic Association, vol. 111(7), pages 2309-2341, July.
    18. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    19. Bruno Ferman, 2023. "Inference in difference‐in‐differences: How much should we trust in independent clusters?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 358-369, April.
    20. Philipp Breidenbach & Timo Mitze, 2022. "Large-scale sport events and COVID-19 infection effects: evidence from the German professional football ‘experiment’," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 15-45.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1912.06320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.