[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/32148.html
   My bibliography  Save this paper

Expecting the unexpected: economic growth under stress

Author

Listed:
  • Gonzalez Rivera, Gloria
  • Rodríguez Caballero, Carlos Vladimir
Abstract
Large and unexpected moves in the factors underlying economic growth should be the main concern of policy makers aiming to strengthen the resilience of the economies. We propose measuring the effects of these extreme moves in the quantiles of the distribution of growth under stressed factors (GiS) and compare them with the popular Growth at Risk(GaR). In this comparison, we consider local and global macroeconomic and financial factors affecting US growth. We show that GaR underestimates the extreme and unexpected fall in growth produced by the COVID19 pandemic while GiS is much more accurate.

Suggested Citation

  • Gonzalez Rivera, Gloria & Rodríguez Caballero, Carlos Vladimir, 2021. "Expecting the unexpected: economic growth under stress," DES - Working Papers. Statistics and Econometrics. WS 32148, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:32148
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/c3662b22-a10b-4637-9a1e-5f69b4c11447/content
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ferrara, Laurent & Mogliani, Matteo & Sahuc, Jean-Guillaume, 2022. "High-frequency monitoring of growth at risk," International Journal of Forecasting, Elsevier, vol. 38(2), pages 582-595.
    2. Eugenio Cerutti & Stijn Claessens & Andrew K. Rose, 2019. "How Important is the Global Financial Cycle? Evidence from Capital Flows," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 67(1), pages 24-60, March.
    3. Busetti, Fabio & Caivano, Michele & Delle Monache, Davide & Pacella, Claudia, 2021. "The time-varying risk of Italian GDP," Economic Modelling, Elsevier, vol. 101(C).
    4. Piergiorgio Alessandri & Leonardo Del Vecchio & Arianna Miglietta, 2019. "Financial Conditions and 'Growth at Risk' in Italy," Temi di discussione (Economic working papers) 1242, Bank of Italy, Economic Research and International Relations Area.
    5. Francesca Loria & Christian Matthes & Donghai Zhang, 2019. "Assessing Macroeconomic Tail Risk," Finance and Economics Discussion Series 2019-026, Board of Governors of the Federal Reserve System (U.S.).
    6. Nina Boyarchenko & Domenico Giannone & Anna Kovner, 2020. "Bank Capital and Real GDP Growth," Staff Reports 950, Federal Reserve Bank of New York.
    7. Knut Are Aastveit & Hilde C. Bjørnland & Leif Anders Thorsrud, 2016. "The World Is Not Enough! Small Open Economies and Regional Dependence," Scandinavian Journal of Economics, Wiley Blackwell, vol. 118(1), pages 168-195, January.
    8. Arrigoni, Simone & Bobasu, Alina & Venditti, Fabrizio, 2020. "The simpler the better: measuring financial conditions for monetary policy and financial stability," Working Paper Series 2451, European Central Bank.
    9. Davide Delle Monache & Andrea De Polis & Ivan Petrella, 2024. "Modeling and Forecasting Macroeconomic Downside Risk," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1010-1025, July.
    10. Matheson, Troy D., 2012. "Financial conditions indexes for the United States and euro area," Economics Letters, Elsevier, vol. 115(3), pages 441-446.
    11. Lucrezia Reichlin & Giovanni Ricco & Thomas Hasenzagl, 2020. "Financial Variables as Predictors of Real Growth Vulnerability," Documents de Travail de l'OFCE 2020-06, Observatoire Francais des Conjonctures Economiques (OFCE).
    12. Scott Brave & R. Andrew Butters, 2012. "Diagnosing the Financial System: Financial Conditions and Financial Stress," International Journal of Central Banking, International Journal of Central Banking, vol. 8(2), pages 191-239, June.
    13. Mark D. Flood & George G. Korenko, 2015. "Systematic scenario selection: stress testing and the nature of uncertainty," Quantitative Finance, Taylor & Francis Journals, vol. 15(1), pages 43-59, January.
    14. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    15. Antoine A. Djogbenou, 2020. "Comovements in the real activity of developed and emerging economies: A test of global versus specific international factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(3), pages 344-370, April.
    16. Leif Anders Thorsrud, 2020. "Words are the New Numbers: A Newsy Coincident Index of the Business Cycle," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 393-409, April.
    17. Scott R Baker & Nicholas Bloom & Stephen J Terry, 2024. "Using Disasters to Estimate the Impact of Uncertainty," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(2), pages 720-747.
    18. Steffen R. Henzel & Malte Rengel, 2017. "Dimensions Of Macroeconomic Uncertainty: A Common Factor Analysis," Economic Inquiry, Western Economic Association International, vol. 55(2), pages 843-877, April.
    19. Riccardo Rebonato, 2019. "A financially justifiable and practically implementable approach to coherent stress testing," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 827-842, May.
    20. Thomas Breuer & Martin Jandacka & Klaus Rheinberger & Martin Summer, 2009. "How to Find Plausible, Severe and Useful Stress Scenarios," International Journal of Central Banking, International Journal of Central Banking, vol. 5(3), pages 205-224, September.
    21. Claessens, Stijn & Kose, M. Ayhan & Terrones, Marco E., 2012. "How do business and financial cycles interact?," Journal of International Economics, Elsevier, vol. 87(1), pages 178-190.
    22. Kristensen Johannes Tang, 2014. "Factor-based forecasting in the presence of outliers: Are factors better selected and estimated by the median than by the mean?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 309-338, May.
    23. Laura E. Jackson & M. Ayhan Kose & Christopher Otrok & Michael T. Owyang, 2016. "Specification and Estimation of Bayesian Dynamic Factor Models: A Monte Carlo Analysis with an Application to Global House Price Comovement," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 361-400, Emerald Group Publishing Limited.
    24. Tobias Adrian & Nellie Liang, 2018. "Monetary Policy, Financial Conditions, and Financial Stability," International Journal of Central Banking, International Journal of Central Banking, vol. 14(1), pages 73-131, January.
    25. Mr. Ananthakrishnan Prasad & Mr. Selim A Elekdag & Mr. Phakawa Jeasakul & Romain Lafarguette & Mr. Adrian Alter & Alan Xiaochen Feng & Changchun Wang, 2019. "Growth at Risk: Concept and Application in IMF Country Surveillance," IMF Working Papers 2019/036, International Monetary Fund.
    26. Figueres, Juan Manuel & Jarociński, Marek, 2020. "Vulnerable growth in the euro area: Measuring the financial conditions," Economics Letters, Elsevier, vol. 191(C).
    27. Gianni De Nicolò & Marcella Lucchetta, 2017. "Forecasting Tail Risks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 159-170, January.
    28. Andrea Carriero & Todd E. Clark & Marcellino Massimiliano, 2020. "Nowcasting Tail Risks to Economic Activity with Many Indicators," Working Papers 20-13R2, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
    29. Paul Glasserman & Chulmin Kang & Wanmo Kang, 2015. "Stress scenario selection by empirical likelihood," Quantitative Finance, Taylor & Francis Journals, vol. 15(1), pages 25-41, January.
    30. Scott R. Baker & Nicholas Bloom & Steven J. Davis & Stephen J. Terry, 2020. "COVID-Induced Economic Uncertainty," NBER Working Papers 26983, National Bureau of Economic Research, Inc.
    31. Frederic S. Mishkin, 2011. "Over the Cliff: From the Subprime to the Global Financial Crisis," Journal of Economic Perspectives, American Economic Association, vol. 25(1), pages 49-70, Winter.
    32. Jushan Bai & Serena Ng, 2008. "Extremum Estimation when the Predictors are Estimated from Large Panels," Annals of Economics and Finance, Society for AEF, vol. 9(2), pages 201-222, November.
    33. Kajal Lahiri & Xuguang Sheng, 2010. "Measuring forecast uncertainty by disagreement: The missing link," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 514-538.
    34. Ravazzolo Francesco & Rothman Philip, 2016. "Oil-price density forecasts of US GDP," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 441-453, September.
    35. Tomohiro Ando & Ruey S. Tsay, 2011. "Quantile regression models with factor‐augmented predictors and information criterion," Econometrics Journal, Royal Economic Society, vol. 14, pages 1-24, February.
    36. Lutz Kilian & Simone Manganelli, 2008. "The Central Banker as a Risk Manager: Estimating the Federal Reserve's Preferences under Greenspan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(6), pages 1103-1129, September.
    37. Martin B. Haugh & Octavio Ruiz Lacedelli, 2020. "Scenario analysis for derivative portfolios via dynamic factor models," Quantitative Finance, Taylor & Francis Journals, vol. 20(4), pages 547-571, April.
    38. Knut Are Aastveit & Hilde C. Bjørnland & Leif Anders Thorsrud, 2016. "The World Is Not Enough! Small Open Economies and Regional Dependence," Scandinavian Journal of Economics, Wiley Blackwell, vol. 118(1), pages 168-195, January.
    39. Mary Amiti & Patrick McGuire & David E. Weinstein, 2019. "International Bank Flows and the Global Financial Cycle," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 67(1), pages 61-108, March.
    40. Mr. Tobias Adrian & Mr. James Morsink & Miss Liliana B Schumacher, 2020. "Stress Testing at the IMF," IMF Departmental Papers / Policy Papers 2020/001, International Monetary Fund.
    41. Jan Hatzius & Peter Hooper & Frederic S. Mishkin & Kermit L. Schoenholtz & Mark W. Watson, 2010. "Financial Conditions Indexes: A Fresh Look after the Financial Crisis," NBER Working Papers 16150, National Bureau of Economic Research, Inc.
    42. In Choi & Dukpa Kim & Yun Jung Kim & Noh‐Sun Kwark, 2018. "A multilevel factor model: Identification, asymptotic theory and applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 355-377, April.
    43. Borio, Claudio & Drehmann, Mathias & Tsatsaronis, Kostas, 2014. "Stress-testing macro stress testing: Does it live up to expectations?," Journal of Financial Stability, Elsevier, vol. 12(C), pages 3-15.
    44. Lucia Alessi & Eric Ghysels & Luca Onorante & Richard Peach & Simon Potter, 2014. "Central Bank Macroeconomic Forecasting During the Global Financial Crisis: The European Central Bank and Federal Reserve Bank of New York Experiences," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 483-500, October.
    45. Rodríguez-Caballero, Carlos Vladimir & Caporin, Massimiliano, 2019. "A multilevel factor approach for the analysis of CDS commonality and risk contribution," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    46. Mr. Nicolas Arregui & Mr. Selim A Elekdag & Mr. Gaston Gelos & Romain Lafarguette & Dulani Seneviratne, 2018. "Can Countries Manage Their Financial Conditions Amid Globalization?," IMF Working Papers 2018/015, International Monetary Fund.
    47. repec:hal:spmain:info:hdl:2441/4nn4ojjkth8qe9ci5b0hpu7ala is not listed on IDEAS
    48. Oliver Röhn & Aida Caldera Sánchez & Mikkel Hermansen & Morten Rasmussen, 2015. "Economic resilience: A new set of vulnerability indicators for OECD countries," OECD Economics Department Working Papers 1249, OECD Publishing.
    49. Hagfors, Lars Ivar & Bunn, Derek & Kristoffersen, Eline & Staver, Tiril Toftdahl & Westgaard, Sjur, 2016. "Modeling the UK electricity price distributions using quantile regression," Energy, Elsevier, vol. 102(C), pages 231-243.
    50. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
    51. Giglio, Stefano & Kelly, Bryan & Pruitt, Seth, 2016. "Systemic risk and the macroeconomy: An empirical evaluation," Journal of Financial Economics, Elsevier, vol. 119(3), pages 457-471.
    52. Adrian, Tobias & Duarte, Fernando & Grinberg, Federico & Mancini-Griffoli, Tommaso, 2018. "Monetary Policy and Financial Conditions: A Cross-Country Study," CEPR Discussion Papers 12681, C.E.P.R. Discussion Papers.
    53. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    54. Hallin, Marc & Liska, Roman, 2011. "Dynamic factors in the presence of blocks," Journal of Econometrics, Elsevier, vol. 163(1), pages 29-41, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fresoli, Diego & Poncela, Pilar & Ruiz, Esther, 2023. "Ignoring cross-correlated idiosyncratic components when extracting factors in dynamic factor models," Economics Letters, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gloria González‐Rivera & C. Vladimir Rodríguez‐Caballero & Esther Ruiz, 2024. "Expecting the unexpected: Stressed scenarios for economic growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 926-942, August.
    2. González-Rivera, Gloria & Maldonado, Javier & Ruiz, Esther, 2019. "Growth in stress," International Journal of Forecasting, Elsevier, vol. 35(3), pages 948-966.
    3. Wang, Bo & Li, Haoran, 2021. "Downside risk, financial conditions and systemic risk in China," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    4. Garrón Vedia, Ignacio & Rodríguez Caballero, Carlos Vladimir & Ruiz Ortega, Esther, 2024. "International vulnerability of inflation," DES - Working Papers. Statistics and Econometrics. WS 44814, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    6. Simone Arrigoni & Alina Bobasu & Fabrizio Venditti, 2022. "Measuring Financial Conditions using Equal Weights Combination," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 70(4), pages 668-697, December.
    7. Deng, Chuang & Wu, Jian, 2023. "Macroeconomic downside risk and the effect of monetary policy," Finance Research Letters, Elsevier, vol. 54(C).
    8. Busetti, Fabio & Caivano, Michele & Delle Monache, Davide & Pacella, Claudia, 2021. "The time-varying risk of Italian GDP," Economic Modelling, Elsevier, vol. 101(C).
    9. Aaron J. Amburgey & Michael W. McCracken, 2023. "On the real‐time predictive content of financial condition indices for growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 137-163, March.
    10. Javier Maldonado & Esther Ruiz, 2021. "Accurate Confidence Regions for Principal Components Factors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(6), pages 1432-1453, December.
    11. James Mitchell & Aubrey Poon & Dan Zhu, 2024. "Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
    12. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    13. Diego Fresoli & Pilar Poncela & Esther Ruiz, 2024. "Dealing with idiosyncratic cross-correlation when constructing confidence regions for PC factors," Papers 2407.06883, arXiv.org.
    14. Iseringhausen, Martin, 2024. "A time-varying skewness model for Growth-at-Risk," International Journal of Forecasting, Elsevier, vol. 40(1), pages 229-246.
    15. Stolbov, Mikhail & Shchepeleva, Maria, 2022. "Modeling global real economic activity: Evidence from variable selection across quantiles," The Journal of Economic Asymmetries, Elsevier, vol. 25(C).
    16. Jörg Breitung & Sandra Eickmeier, 2014. "Analyzing business and financial cycles using multi-level factor models," CAMA Working Papers 2014-43, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    17. Arrigoni, Simone & Bobasu, Alina & Venditti, Fabrizio, 2020. "The simpler the better: measuring financial conditions for monetary policy and financial stability," Working Paper Series 2451, European Central Bank.
    18. Eraslan, Sercan & Schröder, Maximilian, 2023. "Nowcasting GDP with a pool of factor models and a fast estimation algorithm," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1460-1476.
    19. Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023. "Tail Forecasting With Multivariate Bayesian Additive Regression Trees," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
    20. De Santis, Roberto A. & Van der Veken, Wouter, 2020. "Forecasting macroeconomic risk in real time: Great and Covid-19 Recessions," Working Paper Series 2436, European Central Bank.

    More about this item

    Keywords

    Growth Vulnerability;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • F44 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - International Business Cycles
    • F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:32148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.