A Long Memory Model with Mixed Normal GARCH for US Inflation Data
Author
Suggested Citation
Download full text from publisher
Other versions of this item:
- Cheung, Yin-Wong & Chung, Sang-Kuck, 2009. "A Long Memory Model with Mixed Normal GARCH for US Inflation Data," Santa Cruz Department of Economics, Working Paper Series qt2202s99q, Department of Economics, UC Santa Cruz.
References listed on IDEAS
- Vlaar, Peter J G & Palm, Franz C, 1993. "The Message in Weekly Exchange Rates in the European Monetary System: Mean Reversion, Conditional Heteroscedasticity, and Jumps," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 351-360, July.
- Diebold, Francis X & Rudebusch, Glenn D, 1991.
"Is Consumption Too Smooth? Long Memory and the Deaton Paradox,"
The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 1-9, February.
- Francis X. Diebold & Glenn D. Rudebusch, 1989. "Is consumption too smooth? Long memory and the Deaton paradox," Finance and Economics Discussion Series 57, Board of Governors of the Federal Reserve System (U.S.).
- Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
- Markus Haas, 2004.
"Mixed Normal Conditional Heteroskedasticity,"
Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 211-250.
- Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2002. "Mixed normal conditional heteroskedasticity," CFS Working Paper Series 2002/10, Center for Financial Studies (CFS).
- Cheung, Yin-Wong, 1993. "Long Memory in Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 93-101, January.
- Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
- Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992.
"Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?,"
Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
- Kwiatkowski, D. & Phillips, P.C.B. & Schmidt, P., 1990. "Testing the Null Hypothesis of Stationarity Against the Alternative of Unit Root : How Sure are we that Economic Time Series have a Unit Root?," Papers 8905, Michigan State - Econometrics and Economic Theory.
- Denis Kwiatkowski & Peter C.B. Phillips & Peter Schmidt, 1991. "Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root?," Cowles Foundation Discussion Papers 979, Cowles Foundation for Research in Economics, Yale University.
- Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006.
"Multivariate GARCH models: a survey,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
- Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
- BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen, 2003. "Multivariate GARCH models: a survey," LIDAM Discussion Papers CORE 2003031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen VK, 2006. "Multivariate GARCH models: a survey," LIDAM Reprints CORE 1847, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
- Emese Lazar & Carol Alexander, 2006.
"Normal mixture GARCH(1,1): applications to exchange rate modelling,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336.
- Carol Alexander & Emese Lazar, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336, April.
- Carol Alexandra & Emese Lazar, 2004. "Normal Mixture GARCH (1,1): Application to Exchange Rate Modelling," ICMA Centre Discussion Papers in Finance icma-dp2004-05, Henley Business School, University of Reading.
- Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(4), pages 465-487, December.
- K. Newey, Whitney, 1985. "Generalized method of moments specification testing," Journal of Econometrics, Elsevier, vol. 29(3), pages 229-256, September.
- Baillie, Richard T & Bollerslev, Tim, 2002.
"The Message in Daily Exchange Rates: A Conditional-Variance Tale,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 60-68, January.
- Baillie, Richard T & Bollerslev, Tim, 1989. "The Message in Daily Exchange Rates: A Conditional-Variance Tale," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(3), pages 297-305, July.
- Tom Doan, "undated". "RATS program to replicate Baillie and Bollerslev GARCH models with day-of-week effects," Statistical Software Components RTZ00172, Boston College Department of Economics.
- Baillie, R.T. & Chung, C.F. & Tieslau, M.A., 1992.
"A Lond Memory and Variability of Inflation: A Reappraisal of The Friedman Hypothesis,"
Papers
9102, Michigan State - Econometrics and Economic Theory.
- Baillie, R.T. & Chung, C,F. & Tieslau, M.A., 1992. "The Long Memory and Variability of Inflation : A Reappraisal of the Friedman Hypothesis," Papers 9246, Tilburg - Center for Economic Research.
- Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
- Doornik Jurgen A & Ooms Marius, 2004. "Inference and Forecasting for ARFIMA Models With an Application to US and UK Inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-25, May.
- Baillie, R. & Chung, C. & Tieslau, M., 1992. "The Long Memory and Variability of Inflation : A Reappraisal of the Friedman Hypothesis," Discussion Paper 1992-46, Tilburg University, Center for Economic Research.
- Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 493-530.
- Bai, Xuezheng & Russell, Jeffrey R. & Tiao, George C., 2003. "Kurtosis of GARCH and stochastic volatility models with non-normal innovations," Journal of Econometrics, Elsevier, vol. 114(2), pages 349-360, June.
- Cheung, Yin-Wong & Lai, Kon S, 1993. "Do Gold Market Returns Have Long Memory?," The Financial Review, Eastern Finance Association, vol. 28(2), pages 181-202, May.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Goliński, Adam & Zaffaroni, Paolo, 2016. "Long memory affine term structure models," Journal of Econometrics, Elsevier, vol. 191(1), pages 33-56.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yin-Wong Cheung & Sang-Kuck Chung, 2011. "A Long Memory Model with Normal Mixture GARCH," Computational Economics, Springer;Society for Computational Economics, vol. 38(4), pages 517-539, November.
- Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
- Emese Lazar & Carol Alexander, 2006.
"Normal mixture GARCH(1,1): applications to exchange rate modelling,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336.
- Carol Alexander & Emese Lazar, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336, April.
- Carol Alexandra & Emese Lazar, 2004. "Normal Mixture GARCH (1,1): Application to Exchange Rate Modelling," ICMA Centre Discussion Papers in Finance icma-dp2004-05, Henley Business School, University of Reading.
- Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2009.
"Asymmetric multivariate normal mixture GARCH,"
Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2129-2154, April.
- Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2008. "Asymmetric multivariate normal mixture GARCH," CFS Working Paper Series 2008/07, Center for Financial Studies (CFS).
- María Dolores Gadea & Laura Mayoral, 2006.
"The Persistence of Inflation in OECD Countries: A Fractionally Integrated Approach,"
International Journal of Central Banking, International Journal of Central Banking, vol. 2(1), March.
- Gadea, Maria & Mayoral, Laura, 2005. "The Persistence of Inflation in OECD Countries: A Fractionally Integrated Approach," MPRA Paper 815, University Library of Munich, Germany.
- Laura Mayoral, 2005. "The persistence of inflation in OECD countries: A fractionally integrated approach," Economics Working Papers 958, Department of Economics and Business, Universitat Pompeu Fabra, revised Oct 2005.
- Laura Mayoral, 2005. "The Persistence of Inflation in OECD Countries:a Fractionally Integrated Approach," Working Papers 259, Barcelona School of Economics.
- Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014.
"Time Series Models for Business and Economic Forecasting,"
Cambridge Books,
Cambridge University Press, number 9780521520911, September.
- Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521817707, September.
- Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
- BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011.
"Volatility models,"
LIDAM Discussion Papers CORE
2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Panos Pouliasis & Ioannis Kyriakou & Nikos Papapostolou, 2017. "On equity risk prediction and tail spillovers," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 22(4), pages 379-393, October.
- Nomikos, Nikos K. & Pouliasis, Panos K., 2011. "Forecasting petroleum futures markets volatility: The role of regimes and market conditions," Energy Economics, Elsevier, vol. 33(2), pages 321-337, March.
- Dinghai Xu & Tony S. Wirjanto, 2008. "An Empirical Characteristic Function Approach to VaR under a Mixture of Normal Distribution with Time-Varying Volatility," Working Papers 08008, University of Waterloo, Department of Economics.
- Gadea, Maria Dolores & Sabate, Marcela & Serrano, Jose Maria, 2004. "Structural breaks and their trace in the memory: Inflation rate series in the long-run," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 14(2), pages 117-134, April.
- Hartz, Christoph & Mittnik, Stefan & Paolella, Marc S., 2006. "Accurate Value-at-Risk forecast with the (good old) normal-GARCH model," CFS Working Paper Series 2006/23, Center for Financial Studies (CFS).
- Ana Pérez & Esther Ruiz, 2002.
"Modelos de memoria larga para series económicas y financieras,"
Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
- Pérez, Ana, 2001. "Modelos de memoria larga para series económicas y financieras," DES - Documentos de Trabajo. EstadÃstica y EconometrÃa. DS ds010101, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
- Hartz, Christoph & Mittnik, Stefan & Paolella, Marc, 2006. "Accurate value-at-risk forecasting based on the normal-GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2295-2312, December.
- Broda, Simon A. & Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013.
"Stable mixture GARCH models,"
Journal of Econometrics, Elsevier, vol. 172(2), pages 292-306.
- Simon A. BRODA & Markus HAAS & Jochen KRAUSE & Marc S. PAOLELLA & Sven C. STEUDE, 2011. "Stable Mixture GARCH Models," Swiss Finance Institute Research Paper Series 11-39, Swiss Finance Institute.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521779654.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, September.
- C.S. Bos & S.J. Koopman & M. Ooms, 2007.
"Long Memory Modelling of Inflation with Stochastic Variance and Structural Breaks,"
Tinbergen Institute Discussion Papers
07-099/4, Tinbergen Institute.
- Charles S. Bos & Siem Jan Koopman & Marius Ooms, 2007. "Long memory modelling of inflation with stochastic variance and structural breaks," CREATES Research Papers 2007-44, Department of Economics and Business Economics, Aarhus University.
- Haas, Markus & Mittnik, Stefan, 2008. "Multivariate regimeswitching GARCH with an application to international stock markets," CFS Working Paper Series 2008/08, Center for Financial Studies (CFS).
More about this item
Keywords
Heteroskedasticity; Skewness; Inflation; Long Memory; Normal Mixture;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:ucscec:qt94r403d2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/ecucsus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.