[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/cor/louvco/2000017.html
   My bibliography  Save this paper

On the indices of zeros of nash fields

Author

Listed:
  • DE MICHELIS, Stefano
  • GERMANO, Fabrizio
Abstract
Given a game and a dynamics on the space of strategies it is possible to associate to any component of Nash equilibria, an integer, this is the index, see Ritzberger (1994). This number gives useful information on the equilibrium set and in particular on its stability properties under the given dynamics. We prove that indices of components always coincide with their local degrees for the projection map from the Nash equilibrium correspondence to the underlying space of games, so that essentially all dynamics have the same indices. This implies that in many cases the asymptotic properties of equilibria do not depend on the choice of dynamics, a question often debated in recent litterature. In particular many equilibria are asymptotically unstable for any dynamics. Thus the result establishes a further link between the theory of learning and evolutionary dynamics, the theory of equilibrium refinements and the geometry of Nash equilibria.The proof holds for very general situations that include not only any number of players and strategies but also general equilibrium settings and games with a continuum of pure strategies such as Shapley-Shubik type games, this case will be studied in a forthcoming paper.

Suggested Citation

  • DE MICHELIS, Stefano & GERMANO, Fabrizio, 2000. "On the indices of zeros of nash fields," LIDAM Discussion Papers CORE 2000017, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:2000017
    as

    Download full text from publisher

    File URL: https://sites.uclouvain.be/core/publications/coredp/coredp2000.html
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Samuelson, L., 1989. "Evolutionnary Stability In Asymmetric Games," Papers 11-8-2, Pennsylvania State - Department of Economics.
    2. Fudenberg Drew & Kreps David M., 1993. "Learning Mixed Equilibria," Games and Economic Behavior, Elsevier, vol. 5(3), pages 320-367, July.
    3. Faruk Gül & David Pearce & Ennio Stacchetti, 1993. "A Bound on the Proportion of Pure Strategy Equilibria in Generic Games," Mathematics of Operations Research, INFORMS, vol. 18(3), pages 548-552, August.
    4. Jordan J. S., 1993. "Three Problems in Learning Mixed-Strategy Nash Equilibria," Games and Economic Behavior, Elsevier, vol. 5(3), pages 368-386, July.
    5. Ritzberger, Klaus & Weibull, Jorgen W, 1995. "Evolutionary Selection in Normal-Form Games," Econometrica, Econometric Society, vol. 63(6), pages 1371-1399, November.
    6. Hopkins, Ed, 1999. "A Note on Best Response Dynamics," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 138-150, October.
    7. Swinkels Jeroen M., 1993. "Adjustment Dynamics and Rational Play in Games," Games and Economic Behavior, Elsevier, vol. 5(3), pages 455-484, July.
    8. Jean-François Mertens, 1989. "Stable Equilibria---A Reformulation," Mathematics of Operations Research, INFORMS, vol. 14(4), pages 575-625, November.
    9. Dubey, Pradeep & Shubik, Martin, 1978. "A theory of money and financial institutions. 28. The non-cooperative equilibria of a closed trading economy with market supply and bidding strategies," Journal of Economic Theory, Elsevier, vol. 17(1), pages 1-20, February.
    10. Demichelis, Stefano & Germano, Fabrizio, 2002. "On (un)knots and dynamics in games," Games and Economic Behavior, Elsevier, vol. 41(1), pages 46-60, October.
    11. Robert Wilson & Srihari Govindan, 1997. "Uniqueness of the index for Nash equilibria of two-player games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 10(3), pages 541-549.
    12. Oechssler, Jorg, 1997. "An Evolutionary Interpretation of Mixed-Strategy Equilibria," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 203-237, October.
    13. Martin Shubik, 1977. "A Theory of Money and Financial Institutions," Cowles Foundation Discussion Papers 462, Cowles Foundation for Research in Economics, Yale University.
    14. Kaniovski Yuri M. & Young H. Peyton, 1995. "Learning Dynamics in Games with Stochastic Perturbations," Games and Economic Behavior, Elsevier, vol. 11(2), pages 330-363, November.
    15. L. Samuelson & J. Zhang, 2010. "Evolutionary Stability in Asymmetric Games," Levine's Working Paper Archive 453, David K. Levine.
    16. Ritzberger, Klaus, 1994. "The Theory of Normal Form Games form the Differentiable Viewpoint," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(3), pages 207-236.
    17. Samuelson, Larry & Zhang, Jianbo, 1992. "Evolutionary stability in asymmetric games," Journal of Economic Theory, Elsevier, vol. 57(2), pages 363-391, August.
    18. Benaim, Michel & Hirsch, Morris W., 1999. "Mixed Equilibria and Dynamical Systems Arising from Fictitious Play in Perturbed Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 36-72, October.
    19. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    20. Swinkels, Jeroen M., 1992. "Evolution and strategic stability: From maynard smith to kohlberg and mertens," Journal of Economic Theory, Elsevier, vol. 57(2), pages 333-342, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucas Baudin & Rida Laraki, 2022. "Fictitious Play and Best-Response Dynamics in Identical Interest and Zero Sum Stochastic Games," Post-Print hal-03767937, HAL.
    2. Pahl, Lucas, 2023. "Polytope-form games and index/degree theories for extensive-form games," Games and Economic Behavior, Elsevier, vol. 141(C), pages 444-471.
    3. Takahashi, Satoru & Tercieux, Olivier, 2020. "Robust equilibrium outcomes in sequential games under almost common certainty of payoffs," Journal of Economic Theory, Elsevier, vol. 188(C).
    4. Jason Milionis & Christos Papadimitriou & Georgios Piliouras & Kelly Spendlove, 2022. "Nash, Conley, and Computation: Impossibility and Incompleteness in Game Dynamics," Papers 2203.14129, arXiv.org.
    5. Bich, Philippe & Fixary, Julien, 2022. "Network formation and pairwise stability: A new oddness theorem," Journal of Mathematical Economics, Elsevier, vol. 103(C).
    6. Gaël Giraud, 2000. "Notes sur les jeux stratégiques de marchés," Cahiers d'Économie Politique, Programme National Persée, vol. 37(1), pages 257-272.
    7. Dieter Balkenborg & Dries Vermeulen, 2016. "Where Strategic and Evolutionary Stability Depart—A Study of Minimal Diversity Games," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 278-292, February.
    8. Anna Rubinchik & Roberto Samaniego, 2013. "Demand for contract enforcement in a barter environment," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(1), pages 73-97, June.
    9. Demichelis, Stefano & Ritzberger, Klaus, 2003. "From evolutionary to strategic stability," Journal of Economic Theory, Elsevier, vol. 113(1), pages 51-75, November.
    10. DE MICHELIS, Stefano, 2000. "On the index and asymptotic stability of dynamics," LIDAM Discussion Papers CORE 2000018, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Sandholm, William H., 2015. "Population Games and Deterministic Evolutionary Dynamics," Handbook of Game Theory with Economic Applications,, Elsevier.
    12. Lucas Pahl, 2022. "Polytope-form games and Index/Degree Theories for Extensive-form games," Papers 2201.02098, arXiv.org, revised Jul 2023.
    13. Demichelis, Stefano & Germano, Fabrizio, 2002. "On (un)knots and dynamics in games," Games and Economic Behavior, Elsevier, vol. 41(1), pages 46-60, October.
    14. Hefti, Andreas, 2016. "On the relationship between uniqueness and stability in sum-aggregative, symmetric and general differentiable games," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 83-96.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demichelis, Stefano & Germano, Fabrizio, 2002. "On (un)knots and dynamics in games," Games and Economic Behavior, Elsevier, vol. 41(1), pages 46-60, October.
    2. Demichelis, Stefano & Ritzberger, Klaus, 2003. "From evolutionary to strategic stability," Journal of Economic Theory, Elsevier, vol. 113(1), pages 51-75, November.
    3. Sandholm, William H., 2015. "Population Games and Deterministic Evolutionary Dynamics," Handbook of Game Theory with Economic Applications,, Elsevier.
    4. Sandholm,W.H., 2003. "Excess payoff dynamics, potential dynamics, and stable games," Working papers 5, Wisconsin Madison - Social Systems.
    5. Cressman, R. & Schlag, K. H., 1998. "The Dynamic (In)Stability of Backwards Induction," Journal of Economic Theory, Elsevier, vol. 83(2), pages 260-285, December.
    6. Stefano Demichelis & Klaus Ritzberger & Jeroen M. Swinkels, 2004. "The simple geometry of perfect information games," International Journal of Game Theory, Springer;Game Theory Society, vol. 32(3), pages 315-338, June.
    7. Ken Binmore & Larry Samuelson, "undated". "Evolutionary Drift and Equilibrium Selection," ELSE working papers 011, ESRC Centre on Economics Learning and Social Evolution.
    8. Weibull, Jörgen W., 1997. "What have we learned from Evolutionary Game Theory so far?," Working Paper Series 487, Research Institute of Industrial Economics, revised 26 Oct 1998.
    9. Dai, Darong, 2012. "On the Existence and Stability of Pareto Optimal Endogenous Matching with Fairness," MPRA Paper 40560, University Library of Munich, Germany.
    10. Sandholm, William H., 2005. "Excess payoff dynamics and other well-behaved evolutionary dynamics," Journal of Economic Theory, Elsevier, vol. 124(2), pages 149-170, October.
    11. Viossat, Yannick, 2008. "Evolutionary dynamics may eliminate all strategies used in correlated equilibrium," Mathematical Social Sciences, Elsevier, vol. 56(1), pages 27-43, July.
    12. Hauk, Esther & Hurkens, Sjaak, 2002. "On Forward Induction and Evolutionary and Strategic Stability," Journal of Economic Theory, Elsevier, vol. 106(1), pages 66-90, September.
    13. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    14. Ellison, Glenn & Fudenberg, Drew, 2000. "Learning Purified Mixed Equilibria," Journal of Economic Theory, Elsevier, vol. 90(1), pages 84-115, January.
    15. Sandholm, William H., 2001. "Potential Games with Continuous Player Sets," Journal of Economic Theory, Elsevier, vol. 97(1), pages 81-108, March.
    16. Reinoud Joosten, 2009. "Paul Samuelson's critique and equilibrium concepts in evolutionary game theory," Papers on Economics and Evolution 2009-16, Philipps University Marburg, Department of Geography.
    17. Norman, Thomas W.L., 2018. "Inefficient stage Nash is not stable," Journal of Economic Theory, Elsevier, vol. 178(C), pages 275-293.
    18. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    19. Hopkins, Ed, 1999. "Learning, Matching, and Aggregation," Games and Economic Behavior, Elsevier, vol. 26(1), pages 79-110, January.
    20. Fudenberg, Drew & Takahashi, Satoru, 2011. "Heterogeneous beliefs and local information in stochastic fictitious play," Games and Economic Behavior, Elsevier, vol. 71(1), pages 100-120, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2000017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.