[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v40y2021i1p40-61.html
   My bibliography  Save this article

Forecasting aggregate market volatility: The role of good and bad uncertainties

Author

Listed:
  • Li Liu
  • Yudong Wang
Abstract
We decompose economic uncertainty into "good" and "bad" components according to the sign of innovations. Our results indicate that bad uncertainty provides stronger predictive content regarding future market volatility than good uncertainty. The asymmetric models with good and bad uncertainties forecast market volatility in a better way than the symmetric models with overall uncertainty. The combination for asymmetric uncertainty models significantly outperforms the benchmark of autoregression, as well as the combination for symmetric models. The revealed volatility predictability is further demonstrated to be economically significant in the framework of portfolio allocation.

Suggested Citation

  • Li Liu & Yudong Wang, 2021. "Forecasting aggregate market volatility: The role of good and bad uncertainties," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 40-61, January.
  • Handle: RePEc:wly:jforec:v:40:y:2021:i:1:p:40-61
    DOI: 10.1002/for.2694
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2694
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2694?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Segal, Gill & Shaliastovich, Ivan & Yaron, Amir, 2015. "Good and bad uncertainty: Macroeconomic and financial market implications," Journal of Financial Economics, Elsevier, vol. 117(2), pages 369-397.
    3. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    4. Bali, Turan G. & Cakici, Nusret & Whitelaw, Robert F., 2011. "Maxing out: Stocks as lotteries and the cross-section of expected returns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 427-446, February.
    5. Christiane Baumeister & Lutz Kilian, 2015. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
    6. Claeskens, Gerda & Magnus, Jan R. & Vasnev, Andrey L. & Wang, Wendun, 2016. "The forecast combination puzzle: A simple theoretical explanation," International Journal of Forecasting, Elsevier, vol. 32(3), pages 754-762.
    7. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    8. Sydney Ludvigson & Martin Lettau & Daniel Greenwald, 2014. "The Origins of Stock Market Fluctuations," 2014 Meeting Papers 542, Society for Economic Dynamics.
    9. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    10. Capistrán, Carlos & Timmermann, Allan, 2009. "Forecast Combination With Entry and Exit of Experts," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
    11. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    12. Charlotte Christiansen & Maik Schmeling & Andreas Schrimpf, 2012. "A comprehensive look at financial volatility prediction by economic variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 956-977, September.
    13. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    14. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    15. Yang, Yuhong, 2004. "Combining Forecasting Procedures: Some Theoretical Results," Econometric Theory, Cambridge University Press, vol. 20(1), pages 176-222, February.
    16. Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
    17. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    18. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    19. Hai Lin & Chunchi Wu & Guofu Zhou, 2018. "Forecasting Corporate Bond Returns with a Large Set of Predictors: An Iterated Combination Approach," Management Science, INFORMS, vol. 64(9), pages 4218-4238, September.
    20. Pesaran, M. Hashem & Timmermann, Allan, 2009. "Testing Dependence Among Serially Correlated Multicategory Variables," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 325-337.
    21. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    22. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    23. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    24. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    25. Chou, Ray Yeutien & Liu, Nathan, 2010. "The economic value of volatility timing using a range-based volatility model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2288-2301, November.
    26. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    27. Paye, Bradley S., 2012. "‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables," Journal of Financial Economics, Elsevier, vol. 106(3), pages 527-546.
    28. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    29. Jeff Fleming & Chris Kirby & Barbara Ostdiek, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, February.
    30. Hamilton, James D & Gang, Lin, 1996. "Stock Market Volatility and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 573-593, Sept.-Oct.
    31. Tim Bollerslev & Julia Litvinova & George Tauchen, 2006. "Leverage and Volatility Feedback Effects in High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 4(3), pages 353-384.
    32. Li, Jun & Yu, Jianfeng, 2012. "Investor attention, psychological anchors, and stock return predictability," Journal of Financial Economics, Elsevier, vol. 104(2), pages 401-419.
    33. Feunou, Bruno & Okou, Cédric, 2019. "Good Volatility, Bad Volatility, and Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(2), pages 695-727, April.
    34. repec:bla:jfinan:v:59:y:2004:i:4:p:1481-1509 is not listed on IDEAS
    35. Bollerslev, Tim & Li, Sophia Zhengzi & Zhao, Bingzhi, 2020. "Good Volatility, Bad Volatility, and the Cross Section of Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(3), pages 751-781, May.
    36. Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
    37. Bruno Feunou & Mohammad R. Jahan-Parvar & Roméo Tédongap, 2013. "Modeling Market Downside Volatility," Review of Finance, European Finance Association, vol. 17(1), pages 443-481.
    38. Jeremy Smith & Kenneth F. Wallis, 2009. "A Simple Explanation of the Forecast Combination Puzzle," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 331-355, June.
    39. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    40. Alan Moreira & Tyler Muir, 2017. "Volatility-Managed Portfolios," Journal of Finance, American Finance Association, vol. 72(4), pages 1611-1644, August.
    41. Fleming, Jeff & Kirby, Chris & Ostdiek, Barbara, 2003. "The economic value of volatility timing using "realized" volatility," Journal of Financial Economics, Elsevier, vol. 67(3), pages 473-509, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhikai Zhang & Yaojie Zhang & Yudong Wang & Qunwei Wang, 2024. "The predictability of carbon futures volatility: New evidence from the spillovers of fossil energy futures returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(4), pages 557-584, April.
    2. Bucci, Andrea & Palomba, Giulio & Rossi, Eduardo, 2023. "The role of uncertainty in forecasting volatility comovements across stock markets," Economic Modelling, Elsevier, vol. 125(C).
    3. Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
    4. Xinjie Lu & Feng Ma & Jiqian Wang & Jing Liu, 2022. "Forecasting oil futures realized range‐based volatility with jumps, leverage effect, and regime switching: New evidence from MIDAS models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 853-868, July.
    5. Yan, Han & Liu, Bin & Zhu, Xingting & Wu, Yan, 2024. "Systemic risk monitoring model from the perspective of public information arrival," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    6. Zeng, Qing & Zhang, Jixiang & Zhong, Juandan, 2024. "China's futures market volatility and sectoral stock market volatility prediction," Energy Economics, Elsevier, vol. 132(C).
    7. Wang, Lu & Ma, Feng & Hao, Jianyang & Gao, Xinxin, 2021. "Forecasting crude oil volatility with geopolitical risk: Do time-varying switching probabilities play a role?," International Review of Financial Analysis, Elsevier, vol. 76(C).
    8. Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yudong & Wei, Yu & Wu, Chongfeng & Yin, Libo, 2018. "Oil and the short-term predictability of stock return volatility," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 90-104.
    2. Xue Gong & Weiguo Zhang & Yuan Zhao & Xin Ye, 2023. "Forecasting stock volatility with a large set of predictors: A new forecast combination method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1622-1647, November.
    3. Li, Xiaodan & Gong, Xue & Ge, Futing & Huang, Jingjing, 2024. "Forecasting stock volatility using pseudo-out-of-sample information," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 123-135.
    4. Mengxi He & Xianfeng Hao & Yaojie Zhang & Fanyi Meng, 2021. "Forecasting stock return volatility using a robust regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1463-1478, December.
    5. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2024. "Machine-learning stock market volatility: Predictability, drivers, and economic value," International Review of Financial Analysis, Elsevier, vol. 94(C).
    6. Liu, Li & Pan, Zhiyuan, 2020. "Forecasting stock market volatility: The role of technical variables," Economic Modelling, Elsevier, vol. 84(C), pages 55-65.
    7. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    8. Feng He & Libo Yin, 2021. "Shocks to the equity capital ratio of financial intermediaries and the predictability of stock return volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 945-962, September.
    9. Ma, Feng & Liu, Jing & Wahab, M.I.M. & Zhang, Yaojie, 2018. "Forecasting the aggregate oil price volatility in a data-rich environment," Economic Modelling, Elsevier, vol. 72(C), pages 320-332.
    10. Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
    11. Pan, Zhiyuan & Pettenuzzo, Davide & Wang, Yudong, 2020. "Forecasting stock returns: A predictor-constrained approach," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 200-217.
    12. Yaojie Zhang & Yudong Wang & Feng Ma & Yu Wei, 2022. "To jump or not to jump: momentum of jumps in crude oil price volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-31, December.
    13. Yaojie Zhang & Mengxi He & Yuqi Zhao & Xianfeng Hao, 2023. "Predicting stock realized variance based on an asymmetric robust regression approach," Bulletin of Economic Research, Wiley Blackwell, vol. 75(4), pages 1022-1047, October.
    14. Libo Yin, 2022. "The role of intermediary capital risk in predicting oil volatility," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 401-416, January.
    15. Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
    16. Cotter, John & Eyiah-Donkor, Emmanuel & Potì, Valerio, 2023. "Commodity futures return predictability and intertemporal asset pricing," Journal of Commodity Markets, Elsevier, vol. 31(C).
    17. Lu, Xinjie & Ma, Feng & Xu, Jin & Zhang, Zehui, 2022. "Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally," International Review of Financial Analysis, Elsevier, vol. 83(C).
    18. Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
    19. Feng, Jiabao & Wang, Yudong & Yin, Libo, 2017. "Oil volatility risk and stock market volatility predictability: Evidence from G7 countries," Energy Economics, Elsevier, vol. 68(C), pages 240-254.
    20. Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:40:y:2021:i:1:p:40-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.