[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v78y2015i1p569-582.html
   My bibliography  Save this article

Impact of typhoon on the north-west Pacific sea surface temperature: a case study of Typhoon Kaemi (2006)

Author

Listed:
  • M. Subrahmanyam
Abstract
Tropical cyclones, also known as typhoons, in the north-west Pacific are important air–sea interaction process that transports massive amounts of heat and moisture. Due to upwelling phenomena and heavy rainfall, the sea surface temperature (SST) drop can be observed. Typhoon Kaemi has been chosen as a case study to observe decline in SST and better understand the processes. Typhoon Kaemi formed on 19 July 2006 as a low pressure and made the landfall on 26 July 2006. The response of SST to typhoon in the western North Pacific Ocean is examined by using satellite data (AMSR-E SST, Quik SCAT wind) and re-analysis data (OISST and NCEP-II wind). The maximum SST drop of 2 °C was predominant on 22 July 2006. The SST cooling is due to upwelling and rainfall beside and along the typhoon track. Cumulative rainfall is higher in the left side of typhoon track, which results in higher SST cooling; however, land also experienced heavy rainfall. Comparing the SST variations of both satellite and re-analysis data, it was found that the remote-sensing data are more realistic and detailed due to the higher resolution and being nearer to in situ, but depend on availability of satellite orbit pass and sparse of data at the coastal area. Re-analysis data provide better understanding of the SST variations during the typhoon. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • M. Subrahmanyam, 2015. "Impact of typhoon on the north-west Pacific sea surface temperature: a case study of Typhoon Kaemi (2006)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 569-582, August.
  • Handle: RePEc:spr:nathaz:v:78:y:2015:i:1:p:569-582
    DOI: 10.1007/s11069-015-1733-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1733-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1733-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. Sadhuram & B. Rao & D. Rao & P. Shastri & M. Subrahmanyam, 2004. "Seasonal Variability of Cyclone Heat Potential in the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 32(2), pages 191-209, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Huang & Wen Xie & Ming Gu, 2020. "A comparative study of the wind characteristics of three typhoons based on stationary and nonstationary models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(3), pages 785-815, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debashis Paul & Jagabandhu Panda & Ashish Routray, 2022. "Ocean and atmospheric characteristics associated with the cyclogenesis and rapid intensification of NIO super cyclonic storms during 1981–2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 261-289, October.
    2. Bishnu Kumar & Arun Chakraborty, 2011. "Movement of seasonal eddies and its relation with cyclonic heat potential and cyclogenesis points in the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1671-1689, December.
    3. Kumar Ravi Prakash & Tanuja Nigam & Vimlesh Pant & Navin Chandra, 2021. "On the interaction of mesoscale eddies and a tropical cyclone in the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1981-2001, April.
    4. Naresh Vissa & A. Satyanarayana & B. Prasad Kumar, 2013. "Intensity of tropical cyclones during pre- and post-monsoon seasons in relation to accumulated tropical cyclone heat potential over Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 351-371, September.
    5. Y. Sadhuram & K. Maneesha & T. Ramana Murty, 2012. "Intensification of Aila (May 2009) due to a warm core eddy in the north Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(3), pages 1515-1525, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:78:y:2015:i:1:p:569-582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.