[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v63y2012i3p1515-1525.html
   My bibliography  Save this article

Intensification of Aila (May 2009) due to a warm core eddy in the north Bay of Bengal

Author

Listed:
  • Y. Sadhuram
  • K. Maneesha
  • T. Ramana Murty
Abstract
A very severe cyclonic storm “Aila” hit West Bengal on 26 May 2009. The storm intensified when it encountered with a warm core (SST = 31°C) anti-cyclonic eddy (ACE4) in the north Bay of Bengal. The storm intensity increased by 43% due to this eddy, which is comparable with that (34%) obtained from a best fit line (derived from several numerical experiments over north-west Pacific Ocean). The shallow mixed layer of the large-scale ocean and deep mixed layer inside the eddy appear to be crucial parameters besides translation speed of the storm (Uh), ambient relative humidity and thermal stratification below mixed layer, in the storm intensification. From the eddy size and Uh, the eddy feedback factor is found to be about 0.4 (i.e. 40%), which is close to the above. Since there exists an inverse relationship between Uh and UOHC (upper ocean heat content), slow (fast) moving storms require high (low) UOHC. The warm ACE4 with a high UOHC of 149 kj/cm 2 (300% higher than the climatological value) and deep warm layer (D26 = 126 m) opposes the cooling induced by the storm and helps for the intensification of the storm through the supply of large enthalpy (latent + sensible) flux. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Y. Sadhuram & K. Maneesha & T. Ramana Murty, 2012. "Intensification of Aila (May 2009) due to a warm core eddy in the north Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(3), pages 1515-1525, September.
  • Handle: RePEc:spr:nathaz:v:63:y:2012:i:3:p:1515-1525
    DOI: 10.1007/s11069-011-9837-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-9837-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-9837-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. Sadhuram & B. Rao & D. Rao & P. Shastri & M. Subrahmanyam, 2004. "Seasonal Variability of Cyclone Heat Potential in the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 32(2), pages 191-209, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Islam & Mehedi Hasan, 2016. "Climate-induced human displacement: a case study of Cyclone Aila in the south-west coastal region of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1051-1071, March.
    2. M. Rezaul Islam & Mehedi Hasan, 2016. "Climate-induced human displacement: a case study of Cyclone Aila in the south-west coastal region of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1051-1071, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debashis Paul & Jagabandhu Panda & Ashish Routray, 2022. "Ocean and atmospheric characteristics associated with the cyclogenesis and rapid intensification of NIO super cyclonic storms during 1981–2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 261-289, October.
    2. Bishnu Kumar & Arun Chakraborty, 2011. "Movement of seasonal eddies and its relation with cyclonic heat potential and cyclogenesis points in the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1671-1689, December.
    3. M. Subrahmanyam, 2015. "Impact of typhoon on the north-west Pacific sea surface temperature: a case study of Typhoon Kaemi (2006)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 569-582, August.
    4. Kumar Ravi Prakash & Tanuja Nigam & Vimlesh Pant & Navin Chandra, 2021. "On the interaction of mesoscale eddies and a tropical cyclone in the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1981-2001, April.
    5. Naresh Vissa & A. Satyanarayana & B. Prasad Kumar, 2013. "Intensity of tropical cyclones during pre- and post-monsoon seasons in relation to accumulated tropical cyclone heat potential over Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 351-371, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:63:y:2012:i:3:p:1515-1525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.