[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v37y2016i1p233-258.html
   My bibliography  Save this article

Energy Sector Innovation and Growth: An Optimal Energy Crisis

Author

Listed:
  • Peter Hartley
  • Kenneth B. Medlock III
  • Ted Temzelides
  • Xinya Zhang
Abstract
We study the optimal transition from fossil fuels to renewable energy in a neoclassical growth economy with endogenous technological progress in energy production. Innovations keep fossil energy costs under control even as increased exploitation raises mining costs. Nevertheless, the economy transitions to renewable energy after about 80% of available fossil fuels are exploited. The energy shadow price remains more than double current values for over 75 years around the switch time. Consumption and output growth decline sharply during the transition period, which we thus identify as an “energy crisis.†The model highlights the important role energy can play in influencing economic growth.

Suggested Citation

  • Peter Hartley & Kenneth B. Medlock III & Ted Temzelides & Xinya Zhang, 2016. "Energy Sector Innovation and Growth: An Optimal Energy Crisis," The Energy Journal, , vol. 37(1), pages 233-258, January.
  • Handle: RePEc:sae:enejou:v:37:y:2016:i:1:p:233-258
    DOI: 10.5547/01956574.37.1.phar
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.37.1.phar
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.37.1.phar?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Arthur van Benthem & Kenneth Gillingham & James Sweeney, 2008. "Learning-by-Doing and the Optimal Solar Policy in California," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 131-152.
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Coulomb, L. & Neuhoff, K., 2006. "Learning curves and changing product attributes: the case of wind turbines," Cambridge Working Papers in Economics 0618, Faculty of Economics, University of Cambridge.
    4. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    5. Anthony J. Venables, 2014. "Depletion and Development: Natural Resource Supply with Endogenous Field Opening," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(3), pages 313-336.
    6. Robert M. Solow & Frederic Y. Wan, 1976. "Extraction Costs in the Theory of Exhaustible Resources," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 359-370, Autumn.
    7. Mikhail Golosov & John Hassler & Per Krusell & Aleh Tsyvinski, 2014. "Optimal Taxes on Fossil Fuel in General Equilibrium," Econometrica, Econometric Society, vol. 82(1), pages 41-88, January.
    8. Chakravorty, Ujjayant & Roumasset, James & Tse, Kinping, 1997. "Endogenous Substitution among Energy Resources and Global Warming," Journal of Political Economy, University of Chicago Press, vol. 105(6), pages 1201-1234, December.
    9. Parente Stephen L., 1994. "Technology Adoption, Learning-by-Doing, and Economic Growth," Journal of Economic Theory, Elsevier, vol. 63(2), pages 346-369, August.
    10. Shmuel S. Oren & Stephen G. Powell, 1985. "Optimal Supply of a Depletable Resource with a Backstop Technology: Heal's Theorem Revisited," Operations Research, INFORMS, vol. 33(2), pages 277-292, April.
    11. Tsur, Yacov & Zemel, Amos, 2003. "Optimal transition to backstop substitutes for nonrenewable resources," Journal of Economic Dynamics and Control, Elsevier, vol. 27(4), pages 551-572, February.
    12. Grubler, Arnulf & Messner, Sabine, 1998. "Technological change and the timing of mitigation measures," Energy Economics, Elsevier, vol. 20(5-6), pages 495-512, December.
    13. Geoffrey Heal, 1976. "The Relationship Between Price and Extraction Cost for a Resource with a Backstop Technology," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 371-378, Autumn.
    14. Nikolaos Kouvaritakis & Antonio Soria & Stephane Isoard, 2000. "Modelling energy technology dynamics: methodology for adaptive expectations models with learning by doing and learning by searching," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 14(1/2/3/4), pages 104-115.
    15. Klaassen, Ger & Miketa, Asami & Larsen, Katarina & Sundqvist, Thomas, 2005. "The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom," Ecological Economics, Elsevier, vol. 54(2-3), pages 227-240, August.
    16. Frederick Ploeg & Cees Withagen, 2014. "Growth, Renewables, And The Optimal Carbon Tax," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55, pages 283-311, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Acemoglu, Daron & Rafey, Will, 2023. "Mirage on the horizon: Geoengineering and carbon taxation without commitment," Journal of Public Economics, Elsevier, vol. 219(C).
    2. Kevin Genna & Christian Ghiglino & Kazuo Nishimura & Alain Venditti, 2024. "Knowledge-based structural change," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 78(4), pages 1333-1388, December.
    3. Nidhi R. Santen & Mort D. Webster & David Popp & Ignacio Pérez-Arriaga, 2017. "Inter-temporal R&D and capital investment portfolios for the electricity industrys low carbon future," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    4. Zou, Hongyang & Du, Huibin & Brown, Marilyn A. & Mao, Guozhu, 2017. "Large-scale PV power generation in China: A grid parity and techno-economic analysis," Energy, Elsevier, vol. 134(C), pages 256-268.
    5. Bernardino Adão & Borghan Narajabad, 2021. "Scrapping, Renewable Technology Adoption, and Growth," Working Papers w202111, Banco de Portugal, Economics and Research Department.
    6. Di Yin & Youngho Chang, 2020. "Energy R&D Investments and Emissions Abatement Policy," The Energy Journal, , vol. 41(6), pages 133-156, November.
    7. Adão, Bernardino & Narajabad, Borghan & Temzelides, Ted, 2024. "Renewable technology adoption costs and economic growth," Energy Economics, Elsevier, vol. 129(C).
    8. Peter R. Hartley, 2018. "The Cost of Displacing Fossil Fuels: Some Evidence from Texas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    9. Hou, Yaru & Yang, Mian & Ma, Yanran & Zhang, Haiying, 2024. "Study on city's energy transition: Evidence from the establishment of the new energy demonstration cities in China," Energy, Elsevier, vol. 292(C).
    10. Zhanna A. Mingaleva & Maria V. Sigova, 2022. "Financial Aspects of the Implementation of the Fourth Energy Transition," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 5, pages 43-58, October.
    11. Mohn, Klaus, 2016. "Undressing the emperor: A critical review of IEA’s WEO," UiS Working Papers in Economics and Finance 2016/6, University of Stavanger.
    12. Radu Lupu & Adrian Cantemir Călin & Cristina Georgiana Zeldea & Iulia Lupu, 2021. "Systemic Risk Spillovers in the European Energy Sector," Energies, MDPI, vol. 14(19), pages 1-23, October.
    13. Victor Court & Pierre-André Jouvet & Frédéric Lantz, 2018. "Long-term endogenous economic growth and energy transitions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter R. Hartley & Kenneth B. Medlock III, 2017. "The Valley of Death for New Energy Technologies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    2. Ted Temzelides & Borghan Narajabad & Bernardino Adao, 2016. "Renewable Technology Adoption and the Macroeconomy," 2016 Meeting Papers 6, Society for Economic Dynamics.
    3. Bernardino Adão & Borghan Narajabad, 2021. "Scrapping, Renewable Technology Adoption, and Growth," Working Papers w202111, Banco de Portugal, Economics and Research Department.
    4. Adao, Bernardino & Narajabad, Borghan & Temzelides, Ted, 2012. "Renewable Technology Adoption and the Macroeconomy," Working Papers 14-007, Rice University, Department of Economics.
    5. Bernardino Adão & Borghan N. Narajabad & Ted Temzelides, 2022. "Renewable Technology Adoption Costs and Economic Growth," Finance and Economics Discussion Series 2022-045, Board of Governors of the Federal Reserve System (U.S.).
    6. Frederick Van Der Ploeg & Cees Withagen, 2014. "Growth, Renewables, And The Optimal Carbon Tax," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(1), pages 283-311, February.
    7. van der Ploeg, Frederick & Withagen, Cees, 2012. "Is there really a green paradox?," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 342-363.
    8. Prudence Dato, 2017. "Energy Transition Under Irreversibility: A Two-Sector Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 797-820, November.
    9. van der Ploeg, Frederick & Withagen, Cees, 2011. "Growth and the Optimal Carbon Tax: When to Switch from Exhaustible Resources to Renewables?," CEPR Discussion Papers 8215, C.E.P.R. Discussion Papers.
    10. Jouvet, Pierre-André & Schumacher, Ingmar, 2012. "Learning-by-doing and the costs of a backstop for energy transition and sustainability," Ecological Economics, Elsevier, vol. 73(C), pages 122-132.
    11. Amigues, Jean-Pierre & Moreaux, Michel, 2016. "Pollution Abatement v.s. Energy Efficiency Improvements," TSE Working Papers 16-626, Toulouse School of Economics (TSE).
    12. Amigues, Jean-Pierre & Moreaux, Michel, 2019. "Energy Conversion Rate Improvements, Pollution Abatement Efforts and Energy Mix: The Transition toward the Green Economy under a Pollution Stock Constraint," TSE Working Papers 19-994, Toulouse School of Economics (TSE).
    13. van der Ploeg, Frederick & Withagen, Cees, 2012. "Too much coal, too little oil," Journal of Public Economics, Elsevier, vol. 96(1), pages 62-77.
    14. Spiro, Daniel, 2014. "Resource prices and planning horizons," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 159-175.
    15. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    16. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
    17. Frederick Van der Ploeg & Cees Withagen, 2011. "Optimal Carbon Tax with a Dirty Backstop - Oil, Coal, or Renewables?," CESifo Working Paper Series 3334, CESifo.
    18. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    19. van der Meijden, Gerard & van der Ploeg, Frederick & Withagen, Cees, 2015. "International capital markets, oil producers and the Green Paradox," European Economic Review, Elsevier, vol. 76(C), pages 275-297.
    20. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.

    More about this item

    Keywords

    Energy innovation; Energy transition; Energy cost; Economic growth;
    All these keywords.

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:37:y:2016:i:1:p:233-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.