(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)">
[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/kap/annfin/v7y2011i1p1-29.html
   My bibliography  Save this article

On the realized volatility of the ECX CO 2 emissions 2008 futures contract: distribution, dynamics and forecasting

Author

Listed:
  • Julien Chevallier
  • Benoît Sévi
Abstract
The recent implementation of the EU Emissions Trading Scheme (EU ETS) in January 2005 created new financial risks for emitting firms. To deal with these risks, options are traded since October 2006. Because the EU ETS is a new market, the relevant underlying model for option pricing is still a controversial issue. This article improves our understanding of this issue by characterizing the conditional and unconditional distributions of the realized volatility for the 2008 futures contract in the European Climate Exchange (ECX), which is valid during Phase II (2008-2012) of the EU ETS. The realized volatility measures from naive, kernel-based and subsampling estimators are used to obtain inferences about the distributional and dynamic properties of the ECX emissions futures volatility. The distribution of the daily realized volatility in logarithmic form is shown to be close to normal. The mixture-of-distributions hypothesis is strongly rejected, as the returns standardized using daily measures of volatility clearly departs from normality. A simplified HAR-RV model (Corsi, 2009) with only a weekly component, which reproduces long memory properties of the series, is then used to model the volatility dynamics. Finally, the predictive accuracy of the HAR-RV model is tested against GARCH specifications using one-step-ahead forecasts, which confirms the HAR-RV superior ability. Our conclusions indicate that (i) the standard Brownian motion is not an adequate tool for option pricing in the EU ETS, and (ii) a jump component should be included in the stochastic process to price options, thus providing more efficient tools for risk-management activities.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Julien Chevallier & Benoît Sévi, 2011. "On the realized volatility of the ECX CO 2 emissions 2008 futures contract: distribution, dynamics and forecasting," Annals of Finance, Springer, vol. 7(1), pages 1-29, February.
  • Handle: RePEc:kap:annfin:v:7:y:2011:i:1:p:1-29
    DOI: 10.1007/s10436-009-0142-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10436-009-0142-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10436-009-0142-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    2. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    3. Gonçalves, Sílvia & Meddahi, Nour, 2011. "Box-Cox transforms for realized volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 129-144, January.
    4. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    5. Chun Liu & John M. Maheu, 2008. "Are There Structural Breaks in Realized Volatility?," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 326-360, Summer.
    6. repec:dau:papers:123456789/4222 is not listed on IDEAS
    7. Emilie Alberola & Julien Chevallier, 2009. "European Carbon Prices and Banking Restrictions: Evidence from Phase I (2005-2007)," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 51-80.
    8. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    9. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    10. Fulvio Corsi & Stefan Mittnik & Christian Pigorsch & Uta Pigorsch, 2008. "The Volatility of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 46-78.
    11. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    12. Oberndorfer, Ulrich, 2009. "EU Emission Allowances and the stock market: Evidence from the electricity industry," Ecological Economics, Elsevier, vol. 68(4), pages 1116-1126, February.
    13. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    14. Alberola, Emilie & Chevallier, Julien & Cheze, Benoi^t, 2008. "Price drivers and structural breaks in European carbon prices 2005-2007," Energy Policy, Elsevier, vol. 36(2), pages 787-797, February.
    15. Benz, Eva & Trück, Stefan, 2009. "Modeling the price dynamics of CO2 emission allowances," Energy Economics, Elsevier, vol. 31(1), pages 4-15, January.
    16. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
    17. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    18. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    19. Torben G. Andersen & Tim Bollerslev & Nour Meddahi, 2005. "Correcting the Errors: Volatility Forecast Evaluation Using High-Frequency Data and Realized Volatilities," Econometrica, Econometric Society, vol. 73(1), pages 279-296, January.
    20. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
    21. Erik Ansink & Hans-Peter Weikard, 2012. "Sequential sharing rules for river sharing problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(2), pages 187-210, February.
    22. Thomakos, Dimitrios D. & Wang, Tao, 2003. "Realized volatility in the futures markets," Journal of Empirical Finance, Elsevier, vol. 10(3), pages 321-353, May.
    23. Meddahi, Nour & Mykland, Per & Shephard, Neil, 2011. "Realized Volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 1-1, January.
    24. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
    25. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    26. Richard B. Olsen & Ulrich A. Müller & Michel M. Dacorogna & Olivier V. Pictet & Rakhal R. Davé & Dominique M. Guillaume, 1997. "From the bird's eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets (*)," Finance and Stochastics, Springer, vol. 1(2), pages 95-129.
    27. Bunn, Derek W. & Fezzi, Carlo, 2007. "Interaction of European Carbon Trading and Energy Prices," Climate Change Modelling and Policy Working Papers 9092, Fondazione Eni Enrico Mattei (FEEM).
    28. M. Illueca & J. A. LaFuente, 2006. "New evidence on expiration‐day effects using realized volatility: An intraday analysis for the Spanish stock exchange," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(9), pages 923-938, September.
    29. Chevallier, Julien & Ielpo, Florian & Mercier, Ludovic, 2009. "Risk aversion and institutional information disclosure on the European carbon market: A case-study of the 2006 compliance event," Energy Policy, Elsevier, vol. 37(1), pages 15-28, January.
    30. Taylor, Stephen J. & Xu, Xinzhong, 1997. "The incremental volatility information in one million foreign exchange quotations," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 317-340, December.
    31. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    32. Derek W. Bunn & Carlo Fezzi, 2007. "Interaction of European Carbon Trading and Energy Prices," Working Papers 2007.63, Fondazione Eni Enrico Mattei.
    33. Zhou, Bin, 1996. "High-Frequency Data and Volatility in Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 45-52, January.
    34. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    35. Yacine Aït-Sahalia, 2005. "How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 351-416.
    36. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    37. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
    38. Duong, Huu Nhan & Kalev, Petko S., 2008. "The Samuelson hypothesis in futures markets: An analysis using intraday data," Journal of Banking & Finance, Elsevier, vol. 32(4), pages 489-500, April.
    39. Willa W. Chen & Rohit S. Deo, 2004. "Power transformations to induce normality and their applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 117-130, February.
    40. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
    41. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665, National Bureau of Economic Research, Inc.
    42. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    43. Daskalakis, George & Psychoyios, Dimitris & Markellos, Raphael N., 2009. "Modeling CO2 emission allowance prices and derivatives: Evidence from the European trading scheme," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1230-1241, July.
    44. Sílvia Gonçalves & Nour Meddahi, 2009. "Bootstrapping Realized Volatility," Econometrica, Econometric Society, vol. 77(1), pages 283-306, January.
    45. Cai, Jun & Cheung, Yan-Leung & Lee, Raymond S. K. & Melvin, Michael, 2001. "'Once-in-a-generation' yen volatility in 1998: fundamentals, intervention, and order flow," Journal of International Money and Finance, Elsevier, vol. 20(3), pages 327-347, June.
    46. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    47. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    48. A. C. Christiansen & A. Arvanitakis & K. Tangen & H. Hasselknippe, 2005. "Price determinants in the EU emissions trading scheme," Climate Policy, Taylor & Francis Journals, vol. 5(1), pages 15-30, January.
    49. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    50. Wai Fong & Wing Wong, 2006. "The modified mixture of distributions model: a revisit," Annals of Finance, Springer, vol. 2(2), pages 167-178, March.
    51. repec:dau:papers:123456789/4221 is not listed on IDEAS
    52. Marc S. Paoletta & Luca Taschini, 2006. "An Econometric Analysis of Emission Trading Allowances," Swiss Finance Institute Research Paper Series 06-26, Swiss Finance Institute.
    53. Andersen, Torben G, 1996. "Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
    54. Reik H. Börger & Alvaro Cartea & Ruediger Kiesel & Gero Schindlmayr, 2007. "A Multivariate Commodity Analysis and Applications to Risk Management," Birkbeck Working Papers in Economics and Finance 0709, Birkbeck, Department of Economics, Mathematics & Statistics.
    55. Shiuyan Pong & Mark B. Shackleton & Stephen J. Taylor, 2008. "Distinguishing short and long memory volatility specifications," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 617-637, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oscar Carchano & Vicente Medina Martínez & Ángel Pardo Tornero, 2012. "Rolling over EUAs and CERs," Working Papers. Serie AD 2012-15, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    2. Reckling, Dennis, 2016. "Variance risk premia in CO2 markets: A political perspective," Energy Policy, Elsevier, vol. 94(C), pages 345-354.
    3. Chevallier, Julien, 2011. "A model of carbon price interactions with macroeconomic and energy dynamics," Energy Economics, Elsevier, vol. 33(6), pages 1295-1312.
    4. Julien Chevallier & Benoît Sévi, 2014. "On the Stochastic Properties of Carbon Futures Prices," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 127-153, May.
    5. Rittler, Daniel, 2009. "Price Discovery, Causality and Volatility Spillovers in European Union Allowances Phase II: A High Frequency Analysis," Working Papers 0492, University of Heidelberg, Department of Economics.
    6. Julien Chevallier, 2010. "Modelling the convenience yield in carbon prices using daily and realized measures," Working Papers halshs-00463921, HAL.
    7. Shenghua Xiong & Chunfeng Wang & Zhenming Fang & Dan Ma, 2019. "Multi-Step-Ahead Carbon Price Forecasting Based on Variational Mode Decomposition and Fast Multi-Output Relevance Vector Regression Optimized by the Multi-Objective Whale Optimization Algorithm," Energies, MDPI, vol. 12(1), pages 1-21, January.
    8. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    9. Song, Yazhi & Liu, Tiansen & Liang, Dapeng & Li, Yin & Song, Xiaoqiu, 2019. "A Fuzzy Stochastic Model for Carbon Price Prediction Under the Effect of Demand-related Policy in China's Carbon Market," Ecological Economics, Elsevier, vol. 157(C), pages 253-265.
    10. Yue-Jun Zhang, 2016. "Research on carbon emission trading mechanisms: current status and future possibilities," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 39(1/2), pages 89-107.
    11. Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2017. "Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 692-704.
    12. Didit Budi Nugroho & Takayuki Morimoto, 2019. "Incorporating Realized Quarticity into a Realized Stochastic Volatility Model," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(4), pages 495-528, December.
    13. Todorova, Neda, 2015. "The course of realized volatility in the LME non-ferrous metal market," Economic Modelling, Elsevier, vol. 51(C), pages 1-12.
    14. Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
    15. Chevallier, Julien, 2013. "Variance risk-premia in CO2 markets," Economic Modelling, Elsevier, vol. 31(C), pages 598-605.
    16. Chevallier, Julien, 2011. "Nonparametric modeling of carbon prices," Energy Economics, Elsevier, vol. 33(6), pages 1267-1282.
    17. Chevallier, Julien, 2011. "Evaluating the carbon-macroeconomy relationship: Evidence from threshold vector error-correction and Markov-switching VAR models," Economic Modelling, Elsevier, vol. 28(6), pages 2634-2656.
    18. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
    19. Zhu, Bangzhu & Han, Dong & Wang, Ping & Wu, Zhanchi & Zhang, Tao & Wei, Yi-Ming, 2017. "Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression," Applied Energy, Elsevier, vol. 191(C), pages 521-530.
    20. Rannou, Yves, 2017. "Liquidity, information, strategic trading in an electronic order book: New insights from the European carbon markets," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 779-808.
    21. Rittler, Daniel, 2012. "Price discovery and volatility spillovers in the European Union emissions trading scheme: A high-frequency analysis," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 774-785.
    22. Viteva, Svetlana & Veld-Merkoulova, Yulia V. & Campbell, Kevin, 2014. "The forecasting accuracy of implied volatility from ECX carbon options," Energy Economics, Elsevier, vol. 45(C), pages 475-484.
    23. Bredin, Don & Hyde, Stuart & Muckley, Cal, 2014. "A microstructure analysis of the carbon finance market," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 222-234.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:dau:papers:123456789/4598 is not listed on IDEAS
    2. Julien Chevallier & Benoît Sévi, 2009. "On the realized volatility of the ECX CO2 emissions 2008 futures contract: distribution, dynamics and forecasting," Working Papers hal-04140871, HAL.
    3. Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
    4. Matei, Marius, 2011. "Non-Linear Volatility Modeling of Economic and Financial Time Series Using High Frequency Data," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 116-141, June.
    5. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
    6. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.
    7. repec:uts:finphd:39 is not listed on IDEAS
    8. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," OFRC Working Papers Series 2005fe08, Oxford Financial Research Centre.
    9. Patton, Andrew J. & Sheppard, Kevin, 2009. "Optimal combinations of realised volatility estimators," International Journal of Forecasting, Elsevier, vol. 25(2), pages 218-238.
    10. repec:uts:finphd:38 is not listed on IDEAS
    11. Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
    12. Fei Su, 2018. "Essays on Price Discovery and Volatility Dynamics in the Foreign Exchange Market," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2018, January-A.
    13. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    14. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    15. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    16. Chun Liu & John M. Maheu, 2009. "Forecasting realized volatility: a Bayesian model-averaging approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
    17. Sévi, Benoît, 2014. "Forecasting the volatility of crude oil futures using intraday data," European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
    18. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    19. Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023. "The contribution of jump signs and activity to forecasting stock price volatility," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
    20. Maheu, John M. & McCurdy, Thomas H., 2011. "Do high-frequency measures of volatility improve forecasts of return distributions?," Journal of Econometrics, Elsevier, vol. 160(1), pages 69-76, January.
    21. Rossi, Eduardo & Santucci de Magistris, Paolo, 2013. "Long memory and tail dependence in trading volume and volatility," Journal of Empirical Finance, Elsevier, vol. 22(C), pages 94-112.
    22. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Documents de travail du Centre d'Economie de la Sorbonne 17006, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    23. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.

    More about this item

    Keywords

    CO 2 price; Realized volatility; HAR-RV; Emissions markets; EU ETS; Intraday data; Forecasting; C5; G1; Q4;
    All these keywords.

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • G1 - Financial Economics - - General Financial Markets
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:annfin:v:7:y:2011:i:1:p:1-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.