Modeling stock market volatility using new HAR-type models
Author
Suggested Citation
DOI: 10.1016/j.physa.2018.10.013
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ole E. Barndorff-Nielsen & Neil Shephard, 2006.
"Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation,"
Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
- Neil Shephard & Ole Barndorff-Nielsen, 2003. "Econometrics of testing for jumps in financial economics using bipower variation," Economics Series Working Papers 2004-FE-01, University of Oxford, Department of Economics.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2004. "Econometrics of testing for jumps in financial economics using bipower variationÂ," OFRC Working Papers Series 2004fe01, Oxford Financial Research Centre.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Econometrics of testing for jumps in financial economics using bipower variation," Economics Papers 2003-W21, Economics Group, Nuffield College, University of Oxford.
- Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
- Pan, Zhiyuan & Liu, Li, 2018. "Forecasting stock return volatility: A comparison between the roles of short-term and long-term leverage effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 168-180.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007.
"Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility,"
The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2005. "Roughing it Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," NBER Working Papers 11775, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling and Forecasting of Return Volatility," CREATES Research Papers 2007-18, Department of Economics and Business Economics, Aarhus University.
- Bekierman, Jeremias & Manner, Hans, 2018. "Forecasting realized variance measures using time-varying coefficient models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 276-287.
- Zhang, Xun & Lai, K.K. & Wang, Shou-Yang, 2008. "A new approach for crude oil price analysis based on Empirical Mode Decomposition," Energy Economics, Elsevier, vol. 30(3), pages 905-918, May.
- Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
- Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011.
"A reduced form framework for modeling volatility of speculative prices based on realized variation measures,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
- Torben G. Andersen & Tim Bollerslev & Xin Huang, 2007. "A Reduced Form Framework for Modeling Volatility of Speculative Prices based on Realized Variation Measures," CREATES Research Papers 2007-14, Department of Economics and Business Economics, Aarhus University.
- Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
- Zhang, Xun & Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "Estimating the impact of extreme events on crude oil price: An EMD-based event analysis method," Energy Economics, Elsevier, vol. 31(5), pages 768-778, September.
- Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 456-499.
- Hong Yu Xin Pan & Jun Song, 2017. "Volatility cones and volatility arbitrage strategies – empirical study based on SSE ETF option," China Finance Review International, Emerald Group Publishing Limited, vol. 7(2), pages 203-227, May.
- Amaya, Diego & Christoffersen, Peter & Jacobs, Kris & Vasquez, Aurelio, 2015.
"Does realized skewness predict the cross-section of equity returns?,"
Journal of Financial Economics, Elsevier, vol. 118(1), pages 135-167.
- Diego Amaya & Peter Christoffersen & Kris Jacobs & Aurelio Vasquez, 2013. "Does Realized Skewness Predict the Cross-Section of Equity Returns?," CREATES Research Papers 2013-41, Department of Economics and Business Economics, Aarhus University.
- Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012.
"Jump-robust volatility estimation using nearest neighbor truncation,"
Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2009. "Jump-Robust Volatility Estimation using Nearest Neighbor Truncation," NBER Working Papers 15533, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2010. "Jump-robust volatility estimation using nearest neighbor truncation," Staff Reports 465, Federal Reserve Bank of New York.
- Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2009. "Jump-Robust Volatility Estimation using Nearest Neighbor Truncation," CREATES Research Papers 2009-52, Department of Economics and Business Economics, Aarhus University.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Fenghua Wen & Jihong Xiao & Chuangxia Huang & Xiaohua Xia, 2018. "Interaction between oil and US dollar exchange rate: nonlinear causality, time-varying influence and structural breaks in volatility," Applied Economics, Taylor & Francis Journals, vol. 50(3), pages 319-334, January.
- Bentes, Sonia R., 2018. "Is stock market volatility asymmetric? A multi-period analysis for five countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 258-265.
- Kim, Jungmu & Park, Yuen Jung & Ryu, Doojin, 2018. "Testing CEV stochastic volatility models using implied volatility index data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 224-232.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Zhen-Hua Feng & Chun-Feng Liu & Yi-Ming Wei, 2011.
"How does carbon price change? Evidences from EU ETS,"
International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 35(2/3/4), pages 132-144.
- Zhen-Hua Feng & Chun-Feng Liu & Yi-Ming Wei, 2010. "How does carbon price change? Evidences from EU ETS," CEEP-BIT Working Papers 11, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003.
"Modeling and Forecasting Realized Volatility,"
Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
- Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," NBER Working Papers 8160, National Bureau of Economic Research, Inc.
- Peng, Huan & Chen, Ruoxun & Mei, Dexiang & Diao, Xiaohua, 2018. "Forecasting the realized volatility of the Chinese stock market: Do the G7 stock markets help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 78-85.
- Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
- Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015.
"Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes,"
Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
- Kevin Sheppard & Lily Liu & Andrew J. Patton, 2013. "Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes," Economics Series Working Papers 645, University of Oxford, Department of Economics.
- Thomakos, Dimitrios D. & Wang, Tao, 2003. "Realized volatility in the futures markets," Journal of Empirical Finance, Elsevier, vol. 10(3), pages 321-353, May.
- Bollerslev, Tim & Osterrieder, Daniela & Sizova, Natalia & Tauchen, George, 2013. "Risk and return: Long-run relations, fractional cointegration, and return predictability," Journal of Financial Economics, Elsevier, vol. 108(2), pages 409-424.
- Chiarella, Carl & He, Xue-Zhong & Wei, Lijian, 2015. "Learning, information processing and order submission in limit order markets," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 245-268.
- Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005.
"Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements,"
Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
- Siem Jan Koopman & Borus Jungbacker & Eugenie Hol, 2004. "Forecasting Daily Variability of the S&P 100 Stock Index using Historical, Realised and Implied Volatility Measurements," Tinbergen Institute Discussion Papers 04-016/4, Tinbergen Institute.
- Eugenie Hol & Siem Jan Koopman & Borus Jungbacker, 2004. "Forecasting daily variability of the S\&P 100 stock index using historical, realised and implied volatility measurements," Computing in Economics and Finance 2004 342, Society for Computational Economics.
- Xu, Mengjia & Shang, Pengjian & Lin, Aijing, 2016. "Cross-correlation analysis of stock markets using EMD and EEMD," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 82-90.
- Zhang, Tingting & Liu, Zhifeng, 2017. "Fireworks algorithm for mean-VaR/CVaR models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 1-8.
- Ma, Feng & Wei, Yu & Huang, Dengshi & Chen, Yixiang, 2014. "Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 171-180.
- Gong, Xu & Wen, Fenghua & Xia, X.H. & Huang, Jianbai & Pan, Bin, 2017. "Investigating the risk-return trade-off for crude oil futures using high-frequency data," Applied Energy, Elsevier, vol. 196(C), pages 152-161.
- Gong, Xu & Lin, Boqiang, 2017. "Forecasting the good and bad uncertainties of crude oil prices using a HAR framework," Energy Economics, Elsevier, vol. 67(C), pages 315-327.
- Takaishi, Tetsuya, 2017. "Rational GARCH model: An empirical test for stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 451-460.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
- He, Shanshan & Wang, Yudong, 2017. "Revisiting the multifractality in stock returns and its modeling implications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 11-20.
- Gong, Xu & Lin, Boqiang, 2018. "Structural changes and out-of-sample prediction of realized range-based variance in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 27-39.
- Dai, Zhifeng & Wen, Fenghua, 2018. "Some improved sparse and stable portfolio optimization problems," Finance Research Letters, Elsevier, vol. 27(C), pages 46-52.
- Çelik, Sibel & Ergin, Hüseyin, 2014. "Volatility forecasting using high frequency data: Evidence from stock markets," Economic Modelling, Elsevier, vol. 36(C), pages 176-190.
- Shanshan Dong & Yun Feng, 2017. "Does index futures trading cause market fluctuations?," China Finance Review International, Emerald Group Publishing Limited, vol. 8(2), pages 173-198, December.
- Ole E. Barndorff-Nielsen, 2004.
"Power and Bipower Variation with Stochastic Volatility and Jumps,"
Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 1-37.
- Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Power and bipower variation with stochastic volatility and jumps," Economics Papers 2003-W17, Economics Group, Nuffield College, University of Oxford.
- Ma, Junjun & Xiong, Xiong & He, Feng & Zhang, Wei, 2017. "Volatility measurement with directional change in Chinese stock market: Statistical property and investment strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 169-180.
- Chuangxia Huang & Xu Gong & Xiaohong Chen & Fenghua Wen, 2013. "Measuring and Forecasting Volatility in Chinese Stock Market Using HAR-CJ-M Model," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-13, March.
- Wang Pu & Yixiang Chen & Feng Ma, 2016. "Forecasting the realized volatility in the Chinese stock market: further evidence," Applied Economics, Taylor & Francis Journals, vol. 48(33), pages 3116-3130, July.
- Duong, Diep & Swanson, Norman R., 2015.
"Empirical evidence on the importance of aggregation, asymmetry, and jumps for volatility prediction,"
Journal of Econometrics, Elsevier, vol. 187(2), pages 606-621.
- Diep Duong & Norman Swanson, 2013. "Empirical Evidence on the Importance of Aggregation, Asymmetry, and Jumps for Volatility Prediction," Departmental Working Papers 201321, Rutgers University, Department of Economics.
- Xiao, Jihong & Zhou, Min & Wen, Fengming & Wen, Fenghua, 2018. "Asymmetric impacts of oil price uncertainty on Chinese stock returns under different market conditions: Evidence from oil volatility index," Energy Economics, Elsevier, vol. 74(C), pages 777-786.
- Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
- Wang, Xunxiao & Wu, Chongfeng & Xu, Weidong, 2015. "Volatility forecasting: The role of lunch-break returns, overnight returns, trading volume and leverage effects," International Journal of Forecasting, Elsevier, vol. 31(3), pages 609-619.
- Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
- Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
- Xu Gong & Zhifang He & Pu Li & Ning Zhu, 2014. "Forecasting Return Volatility of the CSI 300 Index Using the Stochastic Volatility Model with Continuous Volatility and Jumps," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-10, July.
- Zhuo Huang & Tianyi Wang & Peter Reinhard Hansen, 2017. "Option Pricing with the Realized GARCH Model: An Analytical Approximation Approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(4), pages 328-358, April.
- Li, Yong & Huang, Wei-Ping & Zhang, Jie, 2013. "Forecasting volatility in the Chinese stock market under model uncertainty," Economic Modelling, Elsevier, vol. 35(C), pages 231-234.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Assaf, Ata & Charif, Husni & Mokni, Khaled, 2021. "Dynamic connectedness between uncertainty and energy markets: Do investor sentiments matter?," Resources Policy, Elsevier, vol. 72(C).
- Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2022.
"A moving average heterogeneous autoregressive model for forecasting the realized volatility of the US stock market: Evidence from over a century of data,"
International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 384-400, January.
- Afees A. Salisu & Rangan Gupta & Ahamuefula E. Ogbonna, 2019. "A Moving Average Heterogeneous Autoregressive Model for Forecasting the Realized Volatility of the US Stock Market: Evidence from Over a Century of Data," Working Papers 201978, University of Pretoria, Department of Economics.
- Liu, Jing & Ma, Feng & Zhang, Yaojie, 2019. "Forecasting the Chinese stock volatility across global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 466-477.
- Dai, Zhifeng & Zhou, Huiting & Wen, Fenghua & He, Shaoyi, 2020. "Efficient predictability of stock return volatility: The role of stock market implied volatility," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Dai, Zhifeng & Zhu, Huan & Dong, Xiaodi, 2020. "Forecasting Chinese industry return volatilities with RMB/USD exchange rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
- Maki, Daiki & Ota, Yasushi, 2021. "Impacts of asymmetry on forecasting realized volatility in Japanese stock markets," Economic Modelling, Elsevier, vol. 101(C).
- Daiki Maki & Yasushi Ota, 2020. "The impacts of asymmetry on modeling and forecasting realized volatility in Japanese stock markets," Papers 2006.00158, arXiv.org.
- Chen, Zhonglu & Liang, Chao & Umar, Muhammad, 2021. "Is investor sentiment stronger than VIX and uncertainty indices in predicting energy volatility?," Resources Policy, Elsevier, vol. 74(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xie, Nan & Wang, Zongrun & Chen, Sicen & Gong, Xu, 2019. "Forecasting downside risk in China’s stock market based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 530-541.
- Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
- Chen, Yixiang & Ma, Feng & Zhang, Yaojie, 2019. "Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets," Energy Economics, Elsevier, vol. 81(C), pages 52-62.
- Xiao, Jihong & Wen, Fenghua & Zhao, Yupei & Wang, Xiong, 2021. "The role of US implied volatility index in forecasting Chinese stock market volatility: Evidence from HAR models," International Review of Economics & Finance, Elsevier, vol. 74(C), pages 311-333.
- Zargar, Faisal Nazir & Kumar, Dilip, 2020. "Heterogeneous market hypothesis approach for modeling unbiased extreme value volatility estimator in presence of leverage effect: An individual stock level study with economic significance analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 77(C), pages 271-285.
- Gong, Xu & Lin, Boqiang, 2018. "Structural changes and out-of-sample prediction of realized range-based variance in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 27-39.
- Ma, Feng & Wahab, M.I.M. & Huang, Dengshi & Xu, Weiju, 2017. "Forecasting the realized volatility of the oil futures market: A regime switching approach," Energy Economics, Elsevier, vol. 67(C), pages 136-145.
- Liu, Jing & Ma, Feng & Yang, Ke & Zhang, Yaojie, 2018. "Forecasting the oil futures price volatility: Large jumps and small jumps," Energy Economics, Elsevier, vol. 72(C), pages 321-330.
- Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
- Yang, Cai & Gong, Xu & Zhang, Hongwei, 2019. "Volatility forecasting of crude oil futures: The role of investor sentiment and leverage effect," Resources Policy, Elsevier, vol. 61(C), pages 548-563.
- Li, Wenlan & Cheng, Yuxiang & Fang, Qiang, 2020. "Forecast on silver futures linked with structural breaks and day-of-the-week effect," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
- Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
- Bu, Ruijun & Hizmeri, Rodrigo & Izzeldin, Marwan & Murphy, Anthony & Tsionas, Mike, 2023.
"The contribution of jump signs and activity to forecasting stock price volatility,"
Journal of Empirical Finance, Elsevier, vol. 70(C), pages 144-164.
- , 2019. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 1902, Federal Reserve Bank of Dallas, revised 17 Dec 2022.
- Ruijun Bu & Rodrigo Hizmeri & Marwan Izzeldin & Anthony Murphy & Mike G. Tsionas, 2021. "The Contribution of Jump Signs and Activity to Forecasting Stock Price Volatility," Working Papers 202109, University of Liverpool, Department of Economics.
- Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
- Ma, Feng & Zhang, Yaojie & Huang, Dengshi & Lai, Xiaodong, 2018. "Forecasting oil futures price volatility: New evidence from realized range-based volatility," Energy Economics, Elsevier, vol. 75(C), pages 400-409.
- Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
- Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
- Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022.
"Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
- Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Risk Aversion and the Predictability of Crude Oil Market Volatility: A Forecasting Experiment with Random Forests," Working Papers 201972, University of Pretoria, Department of Economics.
- Wei Zhang & Kai Yan & Dehua Shen, 2021. "Can the Baidu Index predict realized volatility in the Chinese stock market?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-31, December.
- Peng, Huan & Chen, Ruoxun & Mei, Dexiang & Diao, Xiaohua, 2018. "Forecasting the realized volatility of the Chinese stock market: Do the G7 stock markets help?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 78-85.
More about this item
Keywords
Volatility forecasting; Realized volatility; HAR-RV model; EEMD;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:516:y:2019:i:c:p:194-211. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.