[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v72y2000i2p183-207.html
   My bibliography  Save this article

Adaptive Semiparametric Estimation of the Memory Parameter

Author

Listed:
  • Giraitis, Liudas
  • Robinson, Peter M.
  • Samarov, Alexander
Abstract
In Giraitis, Robinson, and Samarov (1997), we have shown that the optimal rate for memory parameter estimators in semiparametric long memory models with degree of "local smoothness" [beta] is n-r([beta]), r([beta])=[beta]/(2[beta]+1), and that a log-periodogram regression estimator (a modified Geweke and Porter-Hudak (1983) estimator) with maximum frequency m=m([beta])[asymptotically equal to]n2r([beta]) is rate optimal. The question which we address in this paper is what is the best obtainable rate when [beta] is unknown, so that estimators cannot depend on [beta]. We obtain a lower bound for the asymptotic quadratic risk of any such adaptive estimator, which turns out to be larger than the optimal nonadaptive rate n-r([beta]) by a logarithmic factor. We then consider a modified log-periodogram regression estimator based on tapered data and with a data-dependent maximum frequency m=m([beta]), which depends on an adaptively chosen estimator [beta] of [beta], and show, using methods proposed by Lepskii (1990) in another context, that this estimator attains the lower bound up to a logarithmic factor. On one hand, this means that this estimator has nearly optimal rate among all adaptive (free from [beta]) estimators, and, on the other hand, it shows near optimality of our data-dependent choice of the rate of the maximum frequency for the modified log-periodogram regression estimator. The proofs contain results which are also of independent interest: one result shows that data tapering gives a significant improvement in asymptotic properties of covariances of discrete Fourier transforms of long memory time series, while another gives an exponential inequality for the modified log-periodogram regression estimator.

Suggested Citation

  • Giraitis, Liudas & Robinson, Peter M. & Samarov, Alexander, 2000. "Adaptive Semiparametric Estimation of the Memory Parameter," Journal of Multivariate Analysis, Elsevier, vol. 72(2), pages 183-207, February.
  • Handle: RePEc:eee:jmvana:v:72:y:2000:i:2:p:183-207
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(99)91865-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Clifford M. Hurvich & Rohit Deo & Julia Brodsky, 1998. "The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 19-46, January.
    2. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    3. Lobato, Ignacio N., 1999. "A semiparametric two-step estimator in a multivariate long memory model," Journal of Econometrics, Elsevier, vol. 90(1), pages 129-153, May.
    4. Clifford M. Hurvich & Bonnie K. Ray, 1995. "Estimation Of The Memory Parameter For Nonstationary Or Noninvertible Fractionally Integrated Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(1), pages 17-41, January.
    5. Liudas Giraitis & Peter M. Robinson & Alexander Samarov, 1997. "Rate Optimal Semiparametric Estimation Of The Memory Parameter Of The Gaussian Time Series With Long‐Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(1), pages 49-60, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giraitis, Liudas & Robinson, Peter, 2002. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 2130, London School of Economics and Political Science, LSE Library.
    2. Duncan A J Blythe & Vadim V Nikulin, 2017. "Long-range temporal correlations in neural narrowband time-series arise due to critical dynamics," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-28, May.
    3. Arteche, J., 2006. "Semiparametric estimation in perturbed long memory series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2118-2141, December.
    4. Valdério A. Reisen & Eric Moulines & Philippe Soulier & Glaura C. Franco, 2010. "On the properties of the periodogram of a stationary long‐memory process over different epochs with applications," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(1), pages 20-36, January.
    5. Saeed Heravi & Kerry Patterson, 2005. "Optimal And Adaptive Semi‐Parametric Narrowband And Broadband And Maximum Likelihood Estimation Of The Long‐Memory Parameter For Real Exchange Rates," Manchester School, University of Manchester, vol. 73(2), pages 165-213, March.
    6. Arteche González, Jesús María & Orbe Lizundia, Jesús María, 2008. "Selection of the number of frequencies using bootstrap techniques in log-periodogram regression," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    7. Masaki Narukawa & Yasumasa Matsuda, 2008. "Broadband semiparametric estimation of the long-memory parameter by the likelihood-based FEXP approach," TERG Discussion Papers 239, Graduate School of Economics and Management, Tohoku University.
    8. Arteche, Josu & Orbe, Jesus, 2009. "Using the bootstrap for finite sample confidence intervals of the log periodogram regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1940-1953, April.
    9. Liudas Giraitis & Peter M Robinson, 2002. "Edgeworth Expansions for Semiparametric Whittle Estimation of Long Memory," STICERD - Econometrics Paper Series 438, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    10. Yixiao Sun, 2005. "Adaptive Estimation of the Regression Discontinuity Model," Econometrics 0506003, University Library of Munich, Germany.
    11. Grace Yap & Wen Cheong Chin, 2016. "Spectral bandwidth selection for long memory," Modern Applied Science, Canadian Center of Science and Education, vol. 10(8), pages 1-63, August.
    12. J. Arteche, 2012. "Semiparametric Inference in Correlated Long Memory Signal Plus Noise Models," Econometric Reviews, Taylor & Francis Journals, vol. 31(4), pages 440-474.
    13. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2007. "Nonstationarity-extended local Whittle estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1353-1384, December.
    14. Giraitis, L. & Robinson, P.M., 2003. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 291, London School of Economics and Political Science, LSE Library.
    15. Bardet Jean-Marc & Dola Béchir, 2016. "Semiparametric Stationarity and Fractional Unit Roots Tests Based on Data-Driven Multidimensional Increment Ratio Statistics," Journal of Time Series Econometrics, De Gruyter, vol. 8(2), pages 115-153, July.
    16. Hurvich, Clifford M. & Moulines, Eric & Soulier, Philippe, 2002. "The FEXP estimator for potentially non-stationary linear time series," Stochastic Processes and their Applications, Elsevier, vol. 97(2), pages 307-340, February.
    17. Josu Arteche & Jesus Orbe, 2009. "Bootstrap‐based bandwidth choice for log‐periodogram regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(6), pages 591-617, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    2. Hurvich, Clifford M. & Moulines, Eric & Soulier, Philippe, 2002. "The FEXP estimator for potentially non-stationary linear time series," Stochastic Processes and their Applications, Elsevier, vol. 97(2), pages 307-340, February.
    3. Hassler, U. & Marmol, F. & Velasco, C., 2006. "Residual log-periodogram inference for long-run relationships," Journal of Econometrics, Elsevier, vol. 130(1), pages 165-207, January.
    4. Chang Sik Kim & Peter C.B. Phillips, 2006. "Log Periodogram Regression: The Nonstationary Case," Cowles Foundation Discussion Papers 1587, Cowles Foundation for Research in Economics, Yale University.
    5. Adam McCloskey, 2013. "Estimation of the long-memory stochastic volatility model parameters that is robust to level shifts and deterministic trends," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 285-301, May.
    6. Liudas Giraitis & Peter M Robinson, 2002. "Edgeworth Expansions for Semiparametric Whittle Estimation of Long Memory," STICERD - Econometrics Paper Series 438, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    7. Giraitis, L. & Robinson, P.M., 2003. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 291, London School of Economics and Political Science, LSE Library.
    8. Feng, Yuanhua & Beran, Jan, 2008. "Filtered Log-periodogram Regression of long memory processes," CoFE Discussion Papers 08/10, University of Konstanz, Center of Finance and Econometrics (CoFE).
    9. Henryk Gurgul & Tomasz Wójtowicz, 2006. "Long-run properties of trading volume and volatility of equities listed in DJIA index," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 16(3-4), pages 29-56.
    10. Frank S. Nielsen, 2011. "Local Whittle estimation of multi‐variate fractionally integrated processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(3), pages 317-335, May.
    11. Sibbertsen, Philipp, 2003. "Log-periodogram estimation of the memory parameter of a long-memory process under trend," Statistics & Probability Letters, Elsevier, vol. 61(3), pages 261-268, February.
    12. Giraitis, Liudas & Robinson, Peter, 2002. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 2130, London School of Economics and Political Science, LSE Library.
    13. Phillips, Peter C.B., 2007. "Unit root log periodogram regression," Journal of Econometrics, Elsevier, vol. 138(1), pages 104-124, May.
    14. Ye, Xunyu & Gao, Ping & Li, Handong, 2015. "Improving estimation of the fractionally differencing parameter in the SARFIMA model using tapered periodogram," Economic Modelling, Elsevier, vol. 46(C), pages 167-179.
    15. Faÿ, Gilles & Moulines, Eric & Roueff, François & Taqqu, Murad S., 2009. "Estimators of long-memory: Fourier versus wavelets," Journal of Econometrics, Elsevier, vol. 151(2), pages 159-177, August.
    16. Robinson, Peter M., 2014. "The estimation of misspecified long memory models," LSE Research Online Documents on Economics 53692, London School of Economics and Political Science, LSE Library.
    17. Robinson, Peter M., 2014. "The estimation of misspecified long memory models," Journal of Econometrics, Elsevier, vol. 178(P2), pages 225-230.
    18. Javier Hualde & Peter M Robinson, 2006. "Semiparametric Estimation of Fractional Cointegration," STICERD - Econometrics Paper Series 502, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    19. Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Long Memory and Data Frequency in Financial Markets," CESifo Working Paper Series 6396, CESifo.
    20. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Is market fear persistent? A long-memory analysis," Finance Research Letters, Elsevier, vol. 27(C), pages 140-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:72:y:2000:i:2:p:183-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.