[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v72y2018icp270-277.html
   My bibliography  Save this article

Testing the optimality of inflation forecasts under flexible loss with random forests

Author

Listed:
  • Behrens, Christoph
  • Pierdzioch, Christian
  • Risse, Marian
Abstract
We contribute to recent research on the optimality of macroeconomic forecasts. We start from the assumption that forecasters may have a flexible rather than a symmetric (quadratic) loss function assumed in standard tests. This assumption leads to the prediction that variables available to a forecaster when a forecast was formed should have no predictive value for a binary 0/1-indicator that captures the sign of the forecast error. A test of forecast optimality, thus, can be interpreted as a classification problem. We use random forests to model this classification problem. Random forests are a powerful nonparametric modeling instrument originally developed in the machine-learning literature. Unlike conventional linear-probability or logit/probit-models, random forests account in a natural way for potential nonlinear links between the signed forecast error and the variables in a forecaster's information set. Random forests also can handle a situation in which the number of forecasts is small relative to the number of predictor variables that a researcher uses to proxy a forecaster's information set. Random forests, therefore, are a powerful modeling device that is of interest for every researcher who studies the properties of macroeconomic forecasts. Upon estimating random forests on forecasts of four German research institutes, we document that optimality of longer-term inflation forecasts cannot be rejected and that inflation forecasts are weakly efficient. For shorter-term inflation forecasts, our results are heterogeneous across research institutes. When we pool the data across the research institutes, we reject optimality of both shorter-term and longer-term forecasts.

Suggested Citation

  • Behrens, Christoph & Pierdzioch, Christian & Risse, Marian, 2018. "Testing the optimality of inflation forecasts under flexible loss with random forests," Economic Modelling, Elsevier, vol. 72(C), pages 270-277.
  • Handle: RePEc:eee:ecmode:v:72:y:2018:i:c:p:270-277
    DOI: 10.1016/j.econmod.2018.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999317312725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2018.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pierdzioch, Christian & Rülke, Jan-Christoph & Tillmann, Peter, 2016. "Using Forecasts To Uncover The Loss Function Of Federal Open Market Committee Members," Macroeconomic Dynamics, Cambridge University Press, vol. 20(3), pages 791-818, April.
    2. Pierdzioch, Christian & Reid, Monique B. & Gupta, Rangan, 2016. "Forecasting the South African inflation rate: On asymmetric loss and forecast rationality," Economic Systems, Elsevier, vol. 40(1), pages 82-92.
    3. Sun, Yuying & Wang, Shouyang & Zhang, Xun, 2018. "How efficient are China's macroeconomic forecasts? Evidences from a new forecasting evaluation approach," Economic Modelling, Elsevier, vol. 68(C), pages 506-513.
    4. Fritsche, Ulrich & Pierdzioch, Christian & Rülke, Jan-Christoph & Stadtmann, Georg, 2015. "Forecasting the Brazilian real and the Mexican peso: Asymmetric loss, forecast rationality, and forecaster herding," International Journal of Forecasting, Elsevier, vol. 31(1), pages 130-139.
    5. Graham Elliott & Allan Timmermann & Ivana Komunjer, 2005. "Estimation and Testing of Forecast Rationality under Flexible Loss," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(4), pages 1107-1125.
    6. Capistrán, Carlos, 2008. "Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational or just cautious?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1415-1427, November.
    7. Aretz, Kevin & Bartram, Söhnke M. & Pope, Peter F., 2011. "Asymmetric loss functions and the rationality of expected stock returns," International Journal of Forecasting, Elsevier, vol. 27(2), pages 413-437.
    8. Oller, Lars-Erik & Barot, Bharat, 2000. "The accuracy of European growth and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 16(3), pages 293-315.
    9. Michael Artis & Massimiliano Marcellino, 2001. "Fiscal forecasting: The track record of the IMF, OECD and EC," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 20-36.
    10. Christoffersen, Peter F. & Diebold, Francis X., 1997. "Optimal Prediction Under Asymmetric Loss," Econometric Theory, Cambridge University Press, vol. 13(6), pages 808-817, December.
    11. Mazumder, Sandeep, 2011. "The empirical validity of the New Keynesian Phillips curve using survey forecasts of inflation," Economic Modelling, Elsevier, vol. 28(6), pages 2439-2450.
    12. Patton, Andrew J. & Timmermann, Allan, 2007. "Testing Forecast Optimality Under Unknown Loss," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1172-1184, December.
    13. Jörg Döpke & Ulrich Fritsche & Boriss Siliverstovs, 2010. "Evaluating German business cycle forecasts under an asymmetric loss function," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(1), pages 1-18.
    14. Krüger, Jens & Hoss, Julian, 2012. "German Business Cycle Forecasts, Asymmetric Loss and Financial Variables," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 63652, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    15. Krüger, Jens J. & Hoss, Julian, 2012. "German business cycle forecasts, asymmetric loss and financial variables," Economics Letters, Elsevier, vol. 114(3), pages 284-287.
    16. Christian Pierdzioch & Monique B. Reid & Rangan Gupta, 2018. "On the directional accuracy of inflation forecasts: evidence from South African survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(5), pages 884-900, April.
    17. Drechsel, Katja & Scheufele, Rolf, 2012. "The performance of short-term forecasts of the German economy before and during the 2008/2009 recession," International Journal of Forecasting, Elsevier, vol. 28(2), pages 428-445.
    18. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    19. Dopke, Jorg & Fritsche, Ulrich, 2006. "When do forecasters disagree? An assessment of German growth and inflation forecast dispersion," International Journal of Forecasting, Elsevier, vol. 22(1), pages 125-135.
    20. Pierdzioch Christian & Stadtmann Georg & Rülke Jan-Christoph, 2012. "Is there a Core of Macroeconomics that Euro Area Forecasters Believe In?," German Economic Review, De Gruyter, vol. 13(1), pages 103-115, February.
    21. Henzel, Steffen & Wollmershäuser, Timo, 2008. "The New Keynesian Phillips curve and the role of expectations: Evidence from the CESifo World Economic Survey," Economic Modelling, Elsevier, vol. 25(5), pages 811-832, September.
    22. Kortelainen, Mika & Paloviita, Maritta & Viren, Matti, 2016. "How useful are measured expectations in estimation and simulation of a conventional small New Keynesian macro model?," Economic Modelling, Elsevier, vol. 52(PB), pages 540-550.
    23. Christoffersen, Peter F & Diebold, Francis X, 1996. "Further Results on Forecasting and Model Selection under Asymmetric Loss," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 561-571, Sept.-Oct.
    24. Allan Timmermann, 2007. "An Evaluation of the World Economic Outlook Forecasts," IMF Staff Papers, Palgrave Macmillan, vol. 54(1), pages 1-33, May.
    25. Jörg Döpke & Ulrich Fritsche, 2006. "Growth and inflation forecasts for Germany a panel-based assessment of accuracy and efficiency," Empirical Economics, Springer, vol. 31(3), pages 777-798, September.
    26. Gebhardt Kirschgässner & Marcel Savioz, 2001. "Monetary Policy and Forecasts for Real GDP Growth: An Empirical Investigation for the Federal Republic of Germany," German Economic Review, Verein für Socialpolitik, vol. 2(4), pages 339-365, November.
    27. Hutson, Mark & Joutz, Fred & Stekler, Herman, 2014. "Interpreting and evaluating CESIfo's World Economic Survey directional forecasts," Economic Modelling, Elsevier, vol. 38(C), pages 6-11.
    28. George A. Christodoulakis & Emmanuel C. Mamatzakis, 2008. "An assessment of the EU growth forecasts under asymmetric preferences," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 483-492.
    29. Frenkel, Michael & Lis, Eliza M. & Rülke, Jan-Christoph, 2011. "Has the economic crisis of 2007-2009 changed the expectation formation process in the Euro area?," Economic Modelling, Elsevier, vol. 28(4), pages 1808-1814, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jianhe & Lu, Luze & Zong, Xiangyu & Xie, Baao, 2023. "Nonlinear relationships in soybean commodities Pairs trading-test by deep reinforcement learning," Finance Research Letters, Elsevier, vol. 58(PC).
    2. Giovannelli, Alessandro & Pericoli, Filippo Maria, 2020. "Are GDP forecasts optimal? Evidence on European countries," International Journal of Forecasting, Elsevier, vol. 36(3), pages 963-973.
    3. Ming Meng & Chenge Song, 2020. "Daily Photovoltaic Power Generation Forecasting Model Based on Random Forest Algorithm for North China in Winter," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    4. Kexin Ding & Ani L. Katchova, 2024. "Testing the optimality of USDA's WASDE forecasts under unknown loss," Agribusiness, John Wiley & Sons, Ltd., vol. 40(4), pages 846-865, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Behrens, 2019. "A Nonparametric Evaluation of the Optimality of German Export and Import Growth Forecasts under Flexible Loss," Economies, MDPI, vol. 7(3), pages 1-23, September.
    2. Giovannelli, Alessandro & Pericoli, Filippo Maria, 2020. "Are GDP forecasts optimal? Evidence on European countries," International Journal of Forecasting, Elsevier, vol. 36(3), pages 963-973.
    3. Demetrescu, Matei & Hacıoğlu Hoke, Sinem, 2019. "Predictive regressions under asymmetric loss: Factor augmentation and model selection," International Journal of Forecasting, Elsevier, vol. 35(1), pages 80-99.
    4. Siddhartha S. Bora & Ani L. Katchova & Todd H. Kuethe, 2021. "The Rationality of USDA Forecasts under Multivariate Asymmetric Loss," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1006-1033, May.
    5. Tsuchiya, Yoichi, 2016. "Assessing macroeconomic forecasts for Japan under an asymmetric loss function," International Journal of Forecasting, Elsevier, vol. 32(2), pages 233-242.
    6. Tsuchiya, Yoichi, 2016. "Asymmetric loss and rationality of Chinese renminbi forecasts: An implication for the trade between China and the US," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 44(C), pages 116-127.
    7. Pierdzioch, Christian & Reid, Monique B. & Gupta, Rangan, 2016. "Forecasting the South African inflation rate: On asymmetric loss and forecast rationality," Economic Systems, Elsevier, vol. 40(1), pages 82-92.
    8. Matteo Iacopini & Francesco Ravazzolo & Luca Rossini, 2020. "Proper scoring rules for evaluating asymmetry in density forecasting," Papers 2006.11265, arXiv.org, revised Sep 2020.
    9. Tsuchiya, Yoichi, 2023. "Assessing the World Bank’s growth forecasts," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 64-84.
    10. Anatolyev, Stanislav, 2009. "Dynamic modeling under linear-exponential loss," Economic Modelling, Elsevier, vol. 26(1), pages 82-89, January.
    11. Patrick Schmidt & Matthias Katzfuss & Tilmann Gneiting, 2021. "Interpretation of point forecasts with unknown directive," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 728-743, September.
    12. Carlos Capistr¡N & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 365-396, March.
    13. Jörg Döpke & Ulrich Fritsche & Boriss Siliverstovs, 2010. "Evaluating German business cycle forecasts under an asymmetric loss function," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(1), pages 1-18.
    14. Jens J. Krüger, 2014. "A multivariate evaluation of German output growth and inflation forecasts," Economics Bulletin, AccessEcon, vol. 34(3), pages 1410-1418.
    15. Behrens, Christoph, 2020. "German trade forecasts since 1970: An evaluation using the panel dimension," Working Papers 26, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    16. Carlos Capistrán & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2‐3), pages 365-396, March.
    17. Jörg Döpke & Ulrich Fritsche & Karsten Müller, 2018. "Has Macroeconomic Forecasting changed after the Great Recession? - Panel-based Evidence on Accuracy and Forecaster Behaviour from Germany," Macroeconomics and Finance Series 201803, University of Hamburg, Department of Socioeconomics.
    18. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    19. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
    20. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.

    More about this item

    Keywords

    Inflation forecasts; German economic research institutes; Forecast optimality; Flexible loss; Random forests;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:72:y:2018:i:c:p:270-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.