[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v65y2008i3p636-649.html
   My bibliography  Save this article

The rebound effect: Microeconomic definitions, limitations and extensions

Author

Listed:
  • Sorrell, Steve
  • Dimitropoulos, John
Abstract
The rebound effect results in part from an increased consumption of energy services following an improvement in the technical efficiency of delivering those services. This increased consumption offsets the energy savings that may otherwise be achieved. If the rebound effect is sufficiently large it may undermine the rationale for policy measures to encourage energy efficiency. The nature and magnitude of the rebound effect is the focus of long-running dispute with energy economics. This paper brings together previous theoretical work to provide a rigorous definition of the rebound effect, to clarify key conceptual issues and to highlight the potential consequences of various assumptions for empirical estimates of the effect. The focus is on the direct rebound effect for a single energy service -- indirect and economy-wide rebound effects are not discussed. Beginning with Khazzoom's original definition of the rebound effect, we expose the limitations of three simplifying assumptions on which this definition is based. First, we argue that capital costs form an important part of the total cost of providing energy services and that empirical studies that estimate rebound effects from variations in energy prices are prone to bias. Second, we argue that energy efficiency should be treated as an endogenous variable and that empirical estimates of the rebound effect may need to apply a simultaneous equation model to capture the joint determination of key variables. Third, we explore the implications of the opportunity costs of time in the production of energy services and highlight the consequences for energy use of improved 'time efficiency', the influence of time costs on the rebound effect and the existence of a parallel rebound effect with respect to time. Each of these considerations serves to highlight the difficulties in obtaining reliable estimates of the rebound effect and the different factors that need to be controlled for. We discuss the implications of these findings for econometric studies and argue that several existing studies may overestimate the magnitude of the effect.

Suggested Citation

  • Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
  • Handle: RePEc:eee:ecolec:v:65:y:2008:i:3:p:636-649
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(07)00440-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brookes, Len, 1990. "The greenhouse effect: the fallacies in the energy efficiency solution," Energy Policy, Elsevier, vol. 18(2), pages 199-201, March.
    2. Espey, Molly, 1998. "Gasoline demand revisited: an international meta-analysis of elasticities," Energy Economics, Elsevier, vol. 20(3), pages 273-295, June.
    3. Amory B. Lovins, 1988. "Energy Saving from the Adoption of More Efficient Appliances: Another View," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 155-170.
    4. David L. Greene & James R. Kahn & Robert C. Gibson, 1999. "Fuel Economy Rebound Effect for U.S. Household Vehicles," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-31.
    5. Bentzen, Jan, 2004. "Estimating the rebound effect in US manufacturing energy consumption," Energy Economics, Elsevier, vol. 26(1), pages 123-134, January.
    6. Roy, Joyashree, 2000. "The rebound effect: some empirical evidence from India," Energy Policy, Elsevier, vol. 28(6-7), pages 433-438, June.
    7. Kok, Rixt & Benders, Rene M.J. & Moll, Henri C., 2006. "Measuring the environmental load of household consumption using some methods based on input-output energy analysis: A comparison of methods and a discussion of results," Energy Policy, Elsevier, vol. 34(17), pages 2744-2761, November.
    8. Juster, F Thomas & Stafford, Frank P, 1991. "The Allocation of Time: Empirical Findings, Behavioral Models, and Problems of Measurement," Journal of Economic Literature, American Economic Association, vol. 29(2), pages 471-522, June.
    9. Peter M. Schwarz & Thomas N. Taylor, 1995. "Cold Hands, Warm Hearth? Climate, Net Takeback, and Household Comfort," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 41-54.
    10. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    11. Milne, Geoffrey & Boardman, Brenda, 2000. "Making cold homes warmer: the effect of energy efficiency improvements in low-income homes A report to the Energy Action Grants Agency Charitable Trust," Energy Policy, Elsevier, vol. 28(6-7), pages 411-424, June.
    12. Binswanger, Mathias, 2001. "Technological progress and sustainable development: what about the rebound effect?," Ecological Economics, Elsevier, vol. 36(1), pages 119-132, January.
    13. Alex Wilson & Jessica Boehland, 2005. "Small is Beautiful U.S. House Size, Resource Use, and the Environment," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 277-287, January.
    14. Michael Parti & Cynthia Parti, 1980. "The Total and Appliance-Specific Conditional Demand for Electricity in the Household Sector," Bell Journal of Economics, The RAND Corporation, vol. 11(1), pages 309-321, Spring.
    15. Blair, Roger D & Kaserman, David L & Tepel, Richard C, 1984. "The Impact of Improved Mileage on Gasoline Consumption," Economic Inquiry, Western Economic Association International, vol. 22(2), pages 209-217, April.
    16. Schipper, Lee & Grubb, Michael, 2000. "On the rebound? Feedback between energy intensities and energy uses in IEA countries," Energy Policy, Elsevier, vol. 28(6-7), pages 367-388, June.
    17. William C. Wheaton, 1982. "The Long-Run Structure of Transportation and Gasoline Demand," Bell Journal of Economics, The RAND Corporation, vol. 13(2), pages 439-454, Autumn.
    18. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    19. Zein-Elabdin, Eiman O., 1997. "Improved stoves in Sub-Saharan Africa: the case of the Sudan," Energy Economics, Elsevier, vol. 19(4), pages 465-475, October.
    20. David L. Greene, 1992. "Vehicle Use and Fuel Economy: How Big is the "Rebound" Effect?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 117-144.
    21. Klein, Yehuda Levi, 1987. "Residential energy conservation choices of poor households during a period of rising fuel prices," Resources and Energy, Elsevier, vol. 9(4), pages 363-378, December.
    22. Grepperud, Sverre & Rasmussen, Ingeborg, 2004. "A general equilibrium assessment of rebound effects," Energy Economics, Elsevier, vol. 26(2), pages 261-282, March.
    23. Jalas, Mikko, 2002. "A time use perspective on the materials intensity of consumption," Ecological Economics, Elsevier, vol. 41(1), pages 109-123, April.
    24. Dermot Gately, 1993. "The Imperfect Price-Reversibility of World Oil Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 163-182.
    25. Willett, Keith D. & Naghshpour, Shahdad, 1987. "Residential demand for energy commodities : A household production function approach," Energy Economics, Elsevier, vol. 9(4), pages 251-256, October.
    26. Haas, Reinhard & Schipper, Lee, 1998. "Residential energy demand in OECD-countries and the role of irreversible efficiency improvements," Energy Economics, Elsevier, vol. 20(4), pages 421-442, September.
    27. Patterson, Murray G, 1996. "What is energy efficiency? : Concepts, indicators and methodological issues," Energy Policy, Elsevier, vol. 24(5), pages 377-390, May.
    28. Pollak, Robert A & Wachter, Michael L, 1975. "The Relevance of the Household Production Function and Its Implications for the Allocation of Time," Journal of Political Economy, University of Chicago Press, vol. 83(2), pages 255-277, April.
    29. Joyce Dargay & Dermot Gately, 1994. "Oil Demand in the Industrialized Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 39-67.
    30. Dermot Gately, 1992. "Imperfect Price-Reversibility of U.S. Gasoline Demand: Asymmetric Responses to Price Increases and Declines," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 179-208.
    31. Berkhout, Peter H. G. & Muskens, Jos C. & W. Velthuijsen, Jan, 2000. "Defining the rebound effect," Energy Policy, Elsevier, vol. 28(6-7), pages 425-432, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    2. Alcott, Blake, 2005. "Jevons' paradox," Ecological Economics, Elsevier, vol. 54(1), pages 9-21, July.
    3. Ruzzenenti, F. & Basosi, R., 2008. "The role of the power/efficiency misconception in the rebound effect's size debate: Does efficiency actually lead to a power enhancement?," Energy Policy, Elsevier, vol. 36(9), pages 3626-3632, September.
    4. Matos, Fernando J.F. & Silva, Francisco J.F., 2011. "The rebound effect on road freight transport: Empirical evidence from Portugal," Energy Policy, Elsevier, vol. 39(5), pages 2833-2841, May.
    5. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    6. Alcott, Blake, 2008. "The sufficiency strategy: Would rich-world frugality lower environmental impact," Ecological Economics, Elsevier, vol. 64(4), pages 770-786, February.
    7. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    8. Wang, Zhaohua & Lu, Milin & Wang, Jian-Cai, 2014. "Direct rebound effect on urban residential electricity use: An empirical study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 124-132.
    9. Saunders, Harry D., 2014. "Toward a neoclassical theory of sustainable consumption: Eight golden age propositions," Ecological Economics, Elsevier, vol. 105(C), pages 220-232.
    10. Mizobuchi, Kenichi, 2008. "An empirical study on the rebound effect considering capital costs," Energy Economics, Elsevier, vol. 30(5), pages 2486-2516, September.
    11. David I. Stern, 2010. "The Role of Energy in Economic Growth," CCEP Working Papers 0310, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    12. Freire-González, Jaume, 2011. "Methods to empirically estimate direct and indirect rebound effect of energy-saving technological changes in households," Ecological Modelling, Elsevier, vol. 223(1), pages 32-40.
    13. Freire-González, Jaume & Font Vivanco, David & Puig-Ventosa, Ignasi, 2017. "Economic structure and energy savings from energy efficiency in households," Ecological Economics, Elsevier, vol. 131(C), pages 12-20.
    14. Michael Huesemann & Joyce Huesemann, 2008. "Will progress in science and technology avert or accelerate global collapse? A critical analysis and policy recommendations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(6), pages 787-825, December.
    15. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    16. Stela Rubínová, 2011. "Reakce poptávky domácností po energii na zvyšování energetické účinnosti: teorie a její důsledky pro konstrukci empiricky ověřitelných modelů [Reaction of Household Energy Demand to Improvements in," Politická ekonomie, Prague University of Economics and Business, vol. 2011(3), pages 359-378.
    17. Figge, Frank & Thorpe, Andrea Stevenson, 2019. "The symbiotic rebound effect in the circular economy," Ecological Economics, Elsevier, vol. 163(C), pages 61-69.
    18. Zhang, Yue-Jun & Peng, Hua-Rong & Su, Bin, 2017. "Energy rebound effect in China's Industry: An aggregate and disaggregate analysis," Energy Economics, Elsevier, vol. 61(C), pages 199-208.
    19. Milin Lu & Zhaohua Wang, 2017. "Rebound effects for residential electricity use in urban China: an aggregation analysis based E-I-O and scenario simulation," Annals of Operations Research, Springer, vol. 255(1), pages 525-546, August.
    20. Lin, Boqiang & Yang, Fang & Liu, Xia, 2013. "A study of the rebound effect on China's current energy conservation and emissions reduction: Measures and policy choices," Energy, Elsevier, vol. 58(C), pages 330-339.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:65:y:2008:i:3:p:636-649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.