[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v27y2023i4p449-484n1.html
   My bibliography  Save this article

Anticipating extreme losses using score-driven shape filters

Author

Listed:
  • Ayala Astrid

    (School of Business, Universidad Francisco Marroquín, Ciudad de Guatemala, 01010, Guatemala)

  • Blazsek Szabolcs

    (School of Business, Universidad Francisco Marroquín, Ciudad de Guatemala, 01010, Guatemala)

  • Escribano Alvaro

    (Department of Economics, Universidad Carlos III de Madrid, Getafe, 28903, Spain)

Abstract
We suggest a new value-at-risk (VaR) framework using EGARCH (exponential generalized autoregressive conditional heteroskedasticity) models with score-driven expected return, scale, and shape filters. We use the EGB2 (exponential generalized beta of the second kind), NIG (normal-inverse Gaussian), and Skew-Gen-t (skewed generalized-t) distributions, for which the score-driven shape parameters drive the skewness, tail shape, and peakedness of the distribution. We use daily data on the Standard & Poor’s 500 (S&P 500) index for the period of February 1990 to October 2021. For all distributions, likelihood-ratio (LR) tests indicate that several EGARCH models with dynamic shape are superior to the EGARCH models with constant shape. We compare the realized volatility with the conditional volatility estimates, and we find two Skew-Gen-t specifications with dynamic shape, which are superior to the Skew-Gen-t specification with constant shape. The shape parameter dynamics are associated with important events that affected the stock market in the United States (US). VaR backtesting is performed for the dot.com boom (January 1997 to October 2020), the 2008 US Financial Crisis (October 2007 to March 2009), and the coronavirus disease (COVID-19) pandemic (January 2020 to October 2021). We show that the use of the dynamic shape parameters improves the VaR measurements.

Suggested Citation

  • Ayala Astrid & Blazsek Szabolcs & Escribano Alvaro, 2023. "Anticipating extreme losses using score-driven shape filters," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(4), pages 449-484, September.
  • Handle: RePEc:bpj:sndecm:v:27:y:2023:i:4:p:449-484:n:1
    DOI: 10.1515/snde-2021-0102
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/snde-2021-0102
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/snde-2021-0102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Blasques & S. J. Koopman & A. Lucas, 2015. "Information-theoretic optimality of observation-driven time series models for continuous responses," Biometrika, Biometrika Trust, vol. 102(2), pages 325-343.
    2. David Backus & Mikhail Chernov & Ian Martin, 2011. "Disasters Implied by Equity Index Options," Journal of Finance, American Finance Association, vol. 66(6), pages 1969-2012, December.
    3. Bollerslev, Tim & Todorov, Viktor & Xu, Lai, 2015. "Tail risk premia and return predictability," Journal of Financial Economics, Elsevier, vol. 118(1), pages 113-134.
    4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    5. Creal, Drew & Koopman, Siem Jan & Lucas, André, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 552-563.
    6. John W. Galbraith, 2004. "Circuit Breakers and the Tail Index of Equity Returns," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 109-129.
    7. Tim Bollerslev & George Tauchen & Hao Zhou, 2009. "Expected Stock Returns and Variance Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4463-4492, November.
    8. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    9. Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022. "Maximum likelihood estimation for score-driven models," Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
    10. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024.
    11. Tata Subba Rao & Granville Tunnicliffe Wilson & Andrew Harvey & Rutger-Jan Lange, 2017. "Volatility Modeling with a Generalized t Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 175-190, March.
    12. Andrew Harvey & Rutger‐Jan Lange, 2018. "Modeling the Interactions between Volatility and Returns using EGARCH‐M," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 909-919, November.
    13. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    14. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    15. Bryan Kelly & Hao Jiang, 2014. "Editor's Choice Tail Risk and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 27(10), pages 2841-2871.
    16. Escanciano, J. Carlos & Lobato, Ignacio N., 2009. "An automatic Portmanteau test for serial correlation," Journal of Econometrics, Elsevier, vol. 151(2), pages 140-149, August.
    17. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
    18. Szabolcs Blazsek & Luis Antonio Monteros, 2017. "Dynamic conditional score models of degrees of freedom: filtering with score-driven heavy tails," Applied Economics, Taylor & Francis Journals, vol. 49(53), pages 5426-5440, November.
    19. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
    20. Szabolcs Blazsek & Han-Chiang Ho & Su-Ping Liu, 2018. "Score-driven Markov-switching EGARCH models: an application to systematic risk analysis," Applied Economics, Taylor & Francis Journals, vol. 50(56), pages 6047-6060, December.
    21. Szabolcs Blazsek & Luis Antonio Monteros, 2017. "Event-study analysis by using dynamic conditional score models," Applied Economics, Taylor & Francis Journals, vol. 49(45), pages 4530-4541, September.
    22. Harvey, Andrew & Sucarrat, Genaro, 2014. "EGARCH models with fat tails, skewness and leverage," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 320-338.
    23. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    24. Daniele Massacci, 2017. "Tail Risk Dynamics in Stock Returns: Links to the Macroeconomy and Global Markets Connectedness," Management Science, INFORMS, vol. 63(9), pages 3072-3089, September.
    25. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    26. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    27. Carmela Quintos & Zhenhong Fan & Peter C. B. Phillips, 2001. "Structural Change Tests in Tail Behaviour and the Asian Crisis," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(3), pages 633-663.
    28. Ayala, Astrid & Blazsek, Szabolcs, 2019. "Maximum likelihood estimation of score-driven models with dynamic shape parameters : an application to Monte Carlo value-at-risk," UC3M Working papers. Economics 28638, Universidad Carlos III de Madrid. Departamento de Economía.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blazsek, Szabolcs & Escribano, Alvaro & Kristof, Erzsebet, 2024. "Global, Arctic, and Antarctic sea ice volume predictions using score-driven threshold climate models," Energy Economics, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayala, Astrid & Blazsek, Szabolcs, 2019. "Maximum likelihood estimation of score-driven models with dynamic shape parameters : an application to Monte Carlo value-at-risk," UC3M Working papers. Economics 28638, Universidad Carlos III de Madrid. Departamento de Economía.
    2. Ayala, Astrid & Blazsek, Szabolcs, 2019. "Score-driven time series models with dynamic shape : an application to the Standard & Poor's 500 index," UC3M Working papers. Economics 28133, Universidad Carlos III de Madrid. Departamento de Economía.
    3. Palumbo, D., 2021. "Testing and Modelling Time Series with Time Varying Tails," Cambridge Working Papers in Economics 2111, Faculty of Economics, University of Cambridge.
    4. Ayala, Astrid & Blazsek, Szabolcs, 2017. "Dynamic conditional score models with time-varying location, scale and shape parameters," UC3M Working papers. Economics 25043, Universidad Carlos III de Madrid. Departamento de Economía.
    5. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    6. Stephen Thiele, 2020. "Modeling the conditional distribution of financial returns with asymmetric tails," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 46-60, January.
    7. Song, Shijia & Li, Handong, 2022. "Predicting VaR for China's stock market: A score-driven model based on normal inverse Gaussian distribution," International Review of Financial Analysis, Elsevier, vol. 82(C).
    8. Song, Shijia & Tian, Fei & Li, Handong, 2021. "An intraday-return-based Value-at-Risk model driven by dynamic conditional score with censored generalized Pareto distribution," Journal of Asian Economics, Elsevier, vol. 74(C).
    9. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
    10. Michel Ferreira Cardia Haddad & Szabolcs Blazsek & Philip Arestis & Franz Fuerst & Hsia Hua Sheng, 2023. "The two-component Beta-t-QVAR-M-lev: a new forecasting model," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(4), pages 379-401, December.
    11. Blazsek, Szabolcs & Licht, Adrian, 2019. "Markov-switching score-driven multivariate models: outlier-robust measurement of the relationships between world crude oil production and US industrial production," UC3M Working papers. Economics 29030, Universidad Carlos III de Madrid. Departamento de Economía.
    12. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    13. Catania, Leopoldo & Proietti, Tommaso, 2020. "Forecasting volatility with time-varying leverage and volatility of volatility effects," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1301-1317.
    14. Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2017. "Time-Varying Transition Probabilities for Markov Regime Switching Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 458-478, May.
    15. Francisco (F.) Blasques & Andre (A.) Lucas & Andries van Vlodrop, 2017. "Finite Sample Optimality of Score-Driven Volatility Models," Tinbergen Institute Discussion Papers 17-111/III, Tinbergen Institute.
    16. Blasques, Francisco & Lucas, André & van Vlodrop, Andries C., 2021. "Finite Sample Optimality of Score-Driven Volatility Models: Some Monte Carlo Evidence," Econometrics and Statistics, Elsevier, vol. 19(C), pages 47-57.
    17. Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022. "Maximum likelihood estimation for score-driven models," Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
    18. Blasques, Francisco & Ji, Jiangyu & Lucas, André, 2016. "Semiparametric score driven volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 58-69.
    19. Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
    20. Giuseppe Buccheri & Stefano Grassi & Giorgio Vocalelli, 2021. "Estimating Risk in Illiquid Markets: a Model of Market Friction with Stochastic Volatility," CEIS Research Paper 506, Tor Vergata University, CEIS, revised 08 Nov 2021.

    More about this item

    Keywords

    dynamic conditional score (DCS); generalized autoregressive score (GAS); score-driven shape parameters; value-at-risk (VaR); VaR backtesting;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:27:y:2023:i:4:p:449-484:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.