We suggest to use a factor model based backdating procedure to construct historical Euro-area macroeconomic time series data for the pre-Euro period. We argue that this is a useful alternative to standard contemporaneous aggregation methods. The article investigates for a number of Euro-area variables whether forecasts based on the factor-backdated data are more precise than those obtained with standard area-wide data. A recursive pseudo-out-of-sample forecasting experiment using quarterly data is conducted. Our results suggest that some key variables (e.g. real GDP, inflation and long-term interest rate) can indeed be forecasted more precisely with the factor-backdated data."> We suggest to use a factor model based backdating procedure to construct historical Euro-area macroeconomic time series data for the pre-Euro period. We argue that this is a useful alternative to standard contemporaneous aggregation methods. The article investigates for a number of Euro-area variables whether forecasts based on the factor-backdated data are more precise than those obtained with standard area-wide data. A recursive pseudo-out-of-sample forecasting experiment using quarterly data is conducted. Our results suggest that some key variables (e.g. real GDP, inflation and long-term interest rate) can indeed be forecasted more precisely with the factor-backdated data."> We suggest to use a factor model based backdating procedure to construct historical Euro-area macroeconomic time series data for the pre-E">
[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v77y2015i1p22-39.html
   My bibliography  Save this article

Forecasting Euro-Area Macroeconomic Variables Using a Factor Model Approach for Backdating

Author

Listed:
  • Ralf Brüggemann
  • Jing Zeng
Abstract
type="main" xml:id="obes12053-abs-0001"> We suggest to use a factor model based backdating procedure to construct historical Euro-area macroeconomic time series data for the pre-Euro period. We argue that this is a useful alternative to standard contemporaneous aggregation methods. The article investigates for a number of Euro-area variables whether forecasts based on the factor-backdated data are more precise than those obtained with standard area-wide data. A recursive pseudo-out-of-sample forecasting experiment using quarterly data is conducted. Our results suggest that some key variables (e.g. real GDP, inflation and long-term interest rate) can indeed be forecasted more precisely with the factor-backdated data.

Suggested Citation

  • Ralf Brüggemann & Jing Zeng, 2015. "Forecasting Euro-Area Macroeconomic Variables Using a Factor Model Approach for Backdating," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(1), pages 22-39, February.
  • Handle: RePEc:bla:obuest:v:77:y:2015:i:1:p:22-39
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/obes.2015.77.issue-1
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    2. Ralf Brüggemann & Helmut Lütkepohl & Massimiliano Marcellino, 2008. "Forecasting euro area variables with German pre-EMU data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 465-481.
    3. Marcellino, Massimliano, 2004. "Forecasting EMU macroeconomic variables," International Journal of Forecasting, Elsevier, vol. 20(2), pages 359-372.
    4. Anderson, Heather M. & Dungey, Mardi & Osborn, Denise R. & Vahid, Farshid, 2011. "Financial integration and the construction of historical financial data for the Euro Area," Economic Modelling, Elsevier, vol. 28(4), pages 1498-1509, July.
    5. Clements, Michael P & Hendry, David F, 1996. "Multi-step Estimation for Forecasting," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(4), pages 657-684, November.
    6. Ralf Brüggemann & Helmut Lütkepohl, 2006. "A small monetary system for the euro area based on German data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(6), pages 683-702, September.
    7. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    8. John F. Henry & L. Randall Wray, 1998. "Economic Time," Macroeconomics 9811004, University Library of Munich, Germany.
    9. Bosker, E.M., 2006. "On the aggregation of eurozone data," Economics Letters, Elsevier, vol. 90(2), pages 260-265, February.
    10. Andreas Beyer & Katarina Juselius, 2008. "Does it Matter How to Measure Aggregates? The Case of Monetary Transmission Mechanisms in the Euro Area," Discussion Papers 08-07, University of Copenhagen. Department of Economics.
    11. Angelini, Elena & Marcellino, Massimiliano, 2011. "Econometric analyses with backdated data: Unified Germany and the euro area," Economic Modelling, Elsevier, vol. 28(3), pages 1405-1414, May.
    12. Angelini, Elena & Henry, Jerome & Marcellino, Massimiliano, 2006. "Interpolation and backdating with a large information set," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2693-2724, December.
    13. Beyer, Andreas & Doornik, Jurgen A & Hendry, David F, 2001. "Constructing Historical Euro-Zone Data," Economic Journal, Royal Economic Society, vol. 111(469), pages 102-121, February.
    14. Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207.
    15. Fagan, Gabriel & Henry, Jerome & Mestre, Ricardo, 2005. "An area-wide model for the euro area," Economic Modelling, Elsevier, vol. 22(1), pages 39-59, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helmut Lütkepohl, 2010. "Forecasting Aggregated Time Series Variables: A Survey," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(2), pages 1-26.
    2. Angelini, Elena & Marcellino, Massimiliano, 2011. "Econometric analyses with backdated data: Unified Germany and the euro area," Economic Modelling, Elsevier, vol. 28(3), pages 1405-1414, May.
    3. Ralf Brüggemann & Helmut Lütkepohl & Massimiliano Marcellino, 2008. "Forecasting euro area variables with German pre-EMU data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 465-481.
    4. Jing Zeng, 2015. "Combining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates," Working Paper Series of the Department of Economics, University of Konstanz 2015-11, Department of Economics, University of Konstanz.
    5. Heather Anderson & Mardi Dungey & Denise Osborn & Farshid Vahid, 2007. "Constructing Historical Euro Area Data," Money Macro and Finance (MMF) Research Group Conference 2006 99, Money Macro and Finance Research Group.
    6. repec:hum:wpaper:sfb649dp2006-065 is not listed on IDEAS
    7. Anderson, Heather M. & Dungey, Mardi & Osborn, Denise R. & Vahid, Farshid, 2011. "Financial integration and the construction of historical financial data for the Euro Area," Economic Modelling, Elsevier, vol. 28(4), pages 1498-1509, July.
    8. Marcellino, Massimliano, 2004. "Forecasting EMU macroeconomic variables," International Journal of Forecasting, Elsevier, vol. 20(2), pages 359-372.
    9. Jing Zeng, 2016. "Combining country-specific forecasts when forecasting Euro area macroeconomic aggregates," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 43(2), pages 415-444, May.
    10. Schumacher, Christian, 2010. "Factor forecasting using international targeted predictors: The case of German GDP," Economics Letters, Elsevier, vol. 107(2), pages 95-98, May.
    11. Paredes, Joan & Pedregal, Diego J. & Pérez, Javier J., 2014. "Fiscal policy analysis in the euro area: Expanding the toolkit," Journal of Policy Modeling, Elsevier, vol. 36(5), pages 800-823.
    12. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    13. Massimiliano Marcellino & Christian Schumacher, 2008. "Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP1," Working Papers 333, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    14. Edda Claus & Mardi Dungey & Renée Fry, 2008. "Monetary Policy in Illiquid Markets: Options for a Small Open Economy," Open Economies Review, Springer, vol. 19(3), pages 305-336, July.
    15. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    16. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2005. "Leading Indicators for Euro‐area Inflation and GDP Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 785-813, December.
    17. Hendry, David F. & Hubrich, Kirstin, 2006. "Forecasting economic aggregates by disaggregates," Working Paper Series 589, European Central Bank.
    18. Esteves, Paulo Soares, 2013. "Direct vs bottom–up approach when forecasting GDP: Reconciling literature results with institutional practice," Economic Modelling, Elsevier, vol. 33(C), pages 416-420.
    19. Stelios D. Bekiros & Alessia Paccagnini, 2016. "Policy‐Oriented Macroeconomic Forecasting with Hybrid DGSE and Time‐Varying Parameter VAR Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 613-632, November.
    20. Bekiros, Stelios D. & Paccagnini, Alessia, 2015. "Macroprudential Policy And Forecasting Using Hybrid Dsge Models With Financial Frictions And State Space Markov-Switching Tvp-Vars," Macroeconomic Dynamics, Cambridge University Press, vol. 19(7), pages 1565-1592, October.
    21. Marcellino, Massimiliano & Schumacher, Christian, 2007. "Factor-MIDAS for now- and forecasting with ragged-edge data: a model comparison for German GDP," Discussion Paper Series 1: Economic Studies 2007,34, Deutsche Bundesbank.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:77:y:2015:i:1:p:22-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.