[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v7y1991i02p200-212_00.html
   My bibliography  Save this article

Limit Theory for M-Estimates in an Integrated Infinite Variance

Author

Listed:
  • Knight, Keith
Abstract
We consider the limiting distributions of M-estimates of an “autoregressive” parameter when the observations come from an integrated linear process with infinite variance innovations. It is shown that M-estimates are, asymptotically, infinitely more efficient than the least-squares estimator (in the sense that they have a faster rate of convergence) and are conditionally asymptotically normal.

Suggested Citation

  • Knight, Keith, 1991. "Limit Theory for M-Estimates in an Integrated Infinite Variance," Econometric Theory, Cambridge University Press, vol. 7(2), pages 200-212, June.
  • Handle: RePEc:cup:etheor:v:7:y:1991:i:02:p:200-212_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466600004400/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galvao Jr., Antonio F., 2009. "Unit root quantile autoregression testing using covariates," Journal of Econometrics, Elsevier, vol. 152(2), pages 165-178, October.
    2. Uwe Hassler & Paulo M.M. Rodrigues & Antonio Rubia, 2016. "Quantile Regression for Long Memory Testing: A Case of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(4), pages 693-724.
    3. Jungjun Choi & In Choi, 2019. "Maximum likelihood estimation of autoregressive models with a near unit root and Cauchy errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1121-1142, October.
    4. Chan, Ngai Hang & Zhang, Rong-Mao, 2009. "Quantile inference for near-integrated autoregressive time series under infinite variance and strong dependence," Stochastic Processes and their Applications, Elsevier, vol. 119(12), pages 4124-4148, December.
    5. Christis Katsouris, 2023. "Quantile Time Series Regression Models Revisited," Papers 2308.06617, arXiv.org, revised Aug 2023.
    6. Bravo, Francesco & Li, Degui & Tjøstheim, Dag, 2021. "Robust nonlinear regression estimation in null recurrent time series," Journal of Econometrics, Elsevier, vol. 224(2), pages 416-438.
    7. Zernov, Serguei & Zinde-Walsh, Victoria & Galbraith, John W., 2009. "Asymptotics for estimation of quantile regressions with truncated infinite-dimensional processes," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 497-508, March.
    8. Phillips, Peter C B & McFarland, James W & McMahon, Patrick C, 1996. "Robust Tests of Forward Exchange Market Efficiency with Empirical Evidence from the 1920s," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 1-22, Jan.-Feb..
    9. Lucas, Andre, 1995. "An outlier robust unit root test with an application to the extended Nelson-Plosser data," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 153-173.
    10. D. M. Mahinda Samarakoon & Keith Knight, 2009. "A Note on Unit Root Tests with Infinite Variance Noise," Econometric Reviews, Taylor & Francis Journals, vol. 28(4), pages 314-334.
    11. Hoek, Henk & Lucas, Andre & van Dijk, Herman K., 1995. "Classical and Bayesian aspects of robust unit root inference," Journal of Econometrics, Elsevier, vol. 69(1), pages 27-59, September.
    12. Lima Luiz Renato & Xiao Zhijie, 2010. "Testing Unit Root Based on Partially Adaptive Estimation," Journal of Time Series Econometrics, De Gruyter, vol. 2(1), pages 1-34, June.
    13. Serttas, Fatma Ozgu, 2010. "Essays on infinite-variance stable errors and robust estimation procedures," ISU General Staff Papers 201001010800002742, Iowa State University, Department of Economics.
    14. Hasan, Mohammad N., 2001. "Rank tests of unit root hypothesis with infinite variance errors," Journal of Econometrics, Elsevier, vol. 104(1), pages 49-65, August.
    15. Phillips, Peter C.B., 1995. "Robust Nonstationary Regression," Econometric Theory, Cambridge University Press, vol. 11(5), pages 912-951, October.
    16. Pierre Perron & Eduardo Zorita & Iliyan Georgiev & Paulo M. M. Rodrigues & A. M. Robert Taylor, 2017. "Unit Root Tests and Heavy-Tailed Innovations," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 733-768, September.
    17. Magda Peligrad & Hailin Sang, 2013. "Central Limit Theorem for Linear Processes with Infinite Variance," Journal of Theoretical Probability, Springer, vol. 26(1), pages 222-239, March.
    18. Serguei Zernov & Victoria Zindle-Walsh & John Galbraith, 2006. "Asymptotics For Estimation Of Truncated Infinite-Dimensional Quantile Regressions," Departmental Working Papers 2006-16, McGill University, Department of Economics.
    19. Alain Hecq & Li Sun, 2019. "Identification of Noncausal Models by Quantile Autoregressions," Papers 1904.05952, arXiv.org.
    20. Xiao, Zhijie, 2004. "Estimating average economic growth in time series data with persistency," Journal of Macroeconomics, Elsevier, vol. 26(4), pages 699-724, December.
    21. Liu, Bingqi & Pang, Tianxiao & Cheng, Siang, 2024. "Estimation for generalized linear cointegration regression models through composite quantile regression approach," Finance Research Letters, Elsevier, vol. 65(C).
    22. Horváth, Lajos & Kokoszka, Piotr, 2003. "A bootstrap approximation to a unit root test statistic for heavy-tailed observations," Statistics & Probability Letters, Elsevier, vol. 62(2), pages 163-173, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:7:y:1991:i:02:p:200-212_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.