You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Built a full-stack product identification system using TensorFlow (ResNet50, MobileNetV2, DenseNet169) for real-time, accurate predictions. Architected an optimized image processing pipeline with OpenCV, reducing latency by 40% and improving model inference efficiency.
This repository hosts the Cervical Cancer Image Classification project, a comprehensive effort aimed at improving the classification accuracy of Squamous Cell Carcinoma (SCC) through advanced deep learning models and ensemble techniques. The project utilizes the Herlev dataset.
This project focuses on emotion classification from facial images using the DenseNet-169 deep learning architecture. We utilize the FER-2013 dataset and apply transfer learning techniques to achieve robust classification results.
This project implements and compares two deep learning architectures (ResNet50 and DenseNet169) for classifying glomeruli images into globally sclerotic and non-globally sclerotic categories.
Trabajo Fin de Máster: Estudio comparativo de un clasificador de imágenes en Raspberry Pi, de forma que se compara el tiempo de la inferencia en la Raspberry Pi con y sin el Neural Compute Stick (NCS). También se estudia como la complejidad de una red neuronal repercute en el tiempo de inferencia y se analiza si los tiempos obtenidos con el NCS …