[go: up one dir, main page]

Jump to content

Snub tetrapentagonal tiling

From Wikipedia, the free encyclopedia
Snub tetrapentagonal tiling
Snub tetrapentagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.3.4.3.5
Schläfli symbol sr{5,4} or
Wythoff symbol | 5 4 2
Coxeter diagram or
Symmetry group [5,4]+, (542)
Dual Order-5-4 floret pentagonal tiling
Properties Vertex-transitive Chiral

In geometry, the snub tetrapentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{5,4}.

Images

[edit]

Drawn in chiral pairs, with edges missing between black triangles:

Dual tiling

[edit]

The dual is called an order-5-4 floret pentagonal tiling, defined by face configuration V3.3.4.3.5.

[edit]

The snub tetrapentagonal tiling is fourth in a series of snub polyhedra and tilings with vertex figure 3.3.4.3.n.

4n2 symmetry mutations of snub tilings: 3.3.4.3.n
Symmetry
4n2
Spherical Euclidean Compact hyperbolic Paracomp.
242 342 442 542 642 742 842 ∞42
Snub
figures
Config. 3.3.4.3.2 3.3.4.3.3 3.3.4.3.4 3.3.4.3.5 3.3.4.3.6 3.3.4.3.7 3.3.4.3.8 3.3.4.3.∞
Gyro
figures
Config. V3.3.4.3.2 V3.3.4.3.3 V3.3.4.3.4 V3.3.4.3.5 V3.3.4.3.6 V3.3.4.3.7 V3.3.4.3.8 V3.3.4.3.∞
Uniform pentagonal/square tilings
Symmetry: [5,4], (*542) [5,4]+, (542) [5+,4], (5*2) [5,4,1+], (*552)
{5,4} t{5,4} r{5,4} 2t{5,4}=t{4,5} 2r{5,4}={4,5} rr{5,4} tr{5,4} sr{5,4} s{5,4} h{4,5}
Uniform duals
V54 V4.10.10 V4.5.4.5 V5.8.8 V45 V4.4.5.4 V4.8.10 V3.3.4.3.5 V3.3.5.3.5 V55

See also

[edit]

References

[edit]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
[edit]