[go: up one dir, main page]

Jump to content

Snub apeiroapeirogonal tiling

From Wikipedia, the free encyclopedia
Snub apeiroapeirogonal tiling
Snub apeiroapeirogonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 3.3.∞.3.∞
Schläfli symbol s{∞,4}
sr{∞,∞} or
Wythoff symbol | ∞ ∞ 2
Coxeter diagram
or
Symmetry group [∞,∞]+, (∞∞2)
Dual Infinitely-infinite-order floret pentagonal tiling
Properties Vertex-transitive Chiral

In geometry, the snub apeiroapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of s{∞,∞}. It has 3 equilateral triangles and 2 apeirogons around every vertex, with vertex figure 3.3.∞.3.∞.

Dual tiling

[edit]

[edit]
Paracompact uniform tilings in [∞,∞] family

=
=

=
=

=
=

=
=

=
=

=

=
{∞,∞} t{∞,∞} r{∞,∞} 2t{∞,∞}=t{∞,∞} 2r{∞,∞}={∞,∞} rr{∞,∞} tr{∞,∞}
Dual tilings
V∞ V∞.∞.∞ V(∞.∞)2 V∞.∞.∞ V∞ V4.∞.4.∞ V4.4.∞
Alternations
[1+,∞,∞]
(*∞∞2)
[∞+,∞]
(∞*∞)
[∞,1+,∞]
(*∞∞∞∞)
[∞,∞+]
(∞*∞)
[∞,∞,1+]
(*∞∞2)
[(∞,∞,2+)]
(2*∞∞)
[∞,∞]+
(2∞∞)
h{∞,∞} s{∞,∞} hr{∞,∞} s{∞,∞} h2{∞,∞} hrr{∞,∞} sr{∞,∞}
Alternation duals
V(∞.∞) V(3.∞)3 V(∞.4)4 V(3.∞)3 V∞ V(4.∞.4)2 V3.3.∞.3.∞

The snub tetrapeirogonal tiling is last in an infinite series of snub polyhedra and tilings with vertex figure 3.3.n.3.n.

4n2 symmetry mutations of snub tilings: 3.3.n.3.n
Symmetry
4n2
Spherical Euclidean Compact hyperbolic Paracompact
222 322 442 552 662 772 882 ∞∞2
Snub
figures
Config. 3.3.2.3.2 3.3.3.3.3 3.3.4.3.4 3.3.5.3.5 3.3.6.3.6 3.3.7.3.7 3.3.8.3.8 3.3.∞.3.∞
Gyro
figures
Config. V3.3.2.3.2 V3.3.3.3.3 V3.3.4.3.4 V3.3.5.3.5 V3.3.6.3.6 V3.3.7.3.7 V3.3.8.3.8 V3.3.∞.3.∞

See also

[edit]

References

[edit]
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
[edit]