Eukleidovský prostor
Eukleidovský prostor je, historicky vzato, prostor splňující Eukleidovy axiomy. Laicky řečeno jedná se o běžný prostor, v kterém jsme zvyklí vytvářet si svoje geometrické představy. Pojem eukleidovského prostoru tak přešel z geometrie do fyziky i do algebry.
Dimense prostoru
Původní představa eukleidovského prostoru je dvojrozměrná (rovina, ve které rýsujeme své geometrické obrazce) či trojrozměrná. Postupným zobecněním si ale dokážeme představit i prostory vyšších dimensí, ve kterých platí stejné Eukleidovy axiomy.
Metrika prostoru
Eukleidovský prostor je metrickým prostorem, tj. lze v něm zavést veličinu, kterou nazýváme metrika čili vzdálenost (každé dva body v prostoru mají mezi sebou určitou vzdálenost). Například kružnici pak definujeme jako množinu bodů, ležících v rovině, které mají od jednoho bodu (středu) stejnou vzdálenost. V eukleidovském prostoru platí tzv. eukleidovská metrika, která umožňuje, že např. kružnice se pak zobrazuje tak, jak jsme zvyklí (při jiné metrice by mohla mít kružnice např. tvar čtverce aj.).
Základní vlastnosti
Z Eukleidových axiomů vyplývají některé základní vlastnosti, které považujeme za samozřejmé:
- Rovnoběžky se nikde neprotínají (respektive někdy říkáme, že se "protínají v nekonečnu")
- součet úhlů v trojúhelníku je 180°
Geometrie
Prostor, ve kterém jsme zvyklí od starověku podnes řešit geometrické úlohy, je eukleidovský prostor. Řešíme v něm úlohy planimetrie, stereometrie, analytické geometrie, perspektivy a další.
Fyzika
Prostor, ve kterém pracuje klasická fyzika, je eukleidovský.
Architektura
Projektování staveb probíhá v eukleidovském prostoru.
Lineární algebra
V lineární algebře se obvykle definuje jako konečněrozměrný unitární prostor nad množinou reálných čísel.
Vlastnosti
Eukleidovský prostor dimenze n se obvykle značí .
Eukleidovský prostor je unitární prostor, a proto je na něm definován skalární součin.
Zavedeme-li v n-rozměrném eukleidovském prostoru kartézskou soustavu souřadnic, pak vzdálenost d mezi dvěma body X a Y o souřadnicích je určena vztahem
Eukleidovský prostor bývá také označován jako kartézský prostor , kde označuje množinu reálných čísel. Kartézský prostor je tedy kartézským součinem n množin .
Rozšířením eukleidovského prostoru lze získat n-rozměrný komplexní prostor . Prostor bývá označován také jako , kde je množina komplexních čísel.
Neeukleidovský prostor
Prostory, ve kterých naopak není splněno všech pět eukleidovských axiomů, se zabývá neeukleidovská geometrie.
Odkazy
Související články
Externí odkazy
- Eukleidovský prostor v encyklopedii MathWorld (anglicky)