Pages that link to "Q36200976"
Jump to navigation
Jump to search
The following pages link to The allosteric mechanism of the chaperonin GroEL: a dynamic analysis (Q36200976):
Displaying 50 items.
- Domain movements in human fatty acid synthase by quantized elastic deformational model (Q24534324) (← links)
- Coupling between catalytic site and collective dynamics: a requirement for mechanochemical activity of enzymes (Q24549622) (← links)
- Conformational dynamics data bank: a database for conformational dynamics of proteins and supramolecular protein assemblies (Q24613963) (← links)
- CHARMM: the biomolecular simulation program (Q24658108) (← links)
- The association of tetrameric acetylcholinesterase with ColQ tail: a block normal mode analysis (Q24810736) (← links)
- Dynamics, flexibility and ligand-induced conformational changes in biological macromolecules: a computational approach (Q26851157) (← links)
- Motion and flexibility in human cytochrome p450 aromatase (Q27308070) (← links)
- Bridging between NMA and Elastic Network Models: Preserving All-Atom Accuracy in Coarse-Grained Models (Q27317289) (← links)
- GroEL2 of Mycobacterium tuberculosis Reveals the Importance of Structural Pliability in Chaperonin Function. (Q27322050) (← links)
- Conformational sampling and nucleotide-dependent transitions of the GroEL subunit probed by unbiased molecular dynamics simulations (Q27333790) (← links)
- The allosteric transition of glucosamine-6-phosphate deaminase: the structure of the T state at 2.3 A resolution (Q27618752) (← links)
- The crystal structure of a GroEL/peptide complex: plasticity as a basis for substrate diversity (Q27620851) (← links)
- Dynamics, flexibility, and allostery in molecular chaperonins (Q28087481) (← links)
- A dynamic model for the allosteric mechanism of GroEL (Q28145239) (← links)
- Nested allosteric interactions in the cytoplasmic chaperonin containing TCP-1 (Q28361396) (← links)
- A unified view of "how allostery works" (Q28539606) (← links)
- Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations (Q29039687) (← links)
- How to describe protein motion without amino acid sequence and atomic coordinates. (Q30330511) (← links)
- FlexE: Using elastic network models to compare models of protein structure. (Q30370013) (← links)
- Dynamics of allosteric transitions in GroEL. (Q30478627) (← links)
- Application of elastic network models to proteins in the crystalline state (Q30483908) (← links)
- Computation of conformational transitions in proteins by virtual atom molecular mechanics as validated in application to adenylate kinase (Q30489757) (← links)
- Conversion of the allosteric transition of GroEL from concerted to sequential by the single mutation Asp-155 -> Ala. (Q30493539) (← links)
- Unfolding and translocation pathway of substrate protein controlled by structure in repetitive allosteric cycles of the ClpY ATPase (Q30498176) (← links)
- Computational modeling of allosteric communication reveals organizing principles of mutation-induced signaling in ABL and EGFR kinases (Q31036423) (← links)
- The energy landscape analysis of cancer mutations in protein kinases (Q31038185) (← links)
- Allosteric transitions of supramolecular systems explored by network models: application to chaperonin GroEL. (Q33432712) (← links)
- Large-scale conformational sampling of proteins using temperature-accelerated molecular dynamics (Q33740100) (← links)
- Using simulations to provide the framework for experimental protein folding studies (Q33855688) (← links)
- Intrinsic flexibility and gating mechanism of the potassium channel KcsA (Q34011742) (← links)
- Simulation of F-actin filaments of several microns (Q34181794) (← links)
- Analysis of functional motions in Brownian molecular machines with an efficient block normal mode approach: myosin-II and Ca2+ -ATPase (Q34184754) (← links)
- The unfolding action of GroEL on a protein substrate (Q34186327) (← links)
- The role of shape in determining molecular motions (Q34351341) (← links)
- Allosteric communication across the native and mutated KIT receptor tyrosine kinase (Q34395251) (← links)
- Molecular flexibility can influence the stimulatory ability of receptor-ligand interactions at cell-cell junctions (Q34574696) (← links)
- Protein folding in the post-genomic era. (Q34989338) (← links)
- A New Method for Coarse-Grained Elastic Normal-Mode Analysis (Q35097779) (← links)
- New advances in normal mode analysis of supermolecular complexes and applications to structural refinement (Q35743750) (← links)
- Biomolecular motors: the F1-ATPase paradigm (Q35749528) (← links)
- Normal mode refinement of anisotropic thermal parameters for a supramolecular complex at 3.42-A crystallographic resolution (Q35808767) (← links)
- Coupling between allosteric transitions in GroEL and assisted folding of a substrate protein (Q35829026) (← links)
- Spontaneous conformational changes in the E. coli GroEL subunit from all-atom molecular dynamics simulations (Q35963381) (← links)
- Allosteric transitions in the chaperonin GroEL are captured by a dominant normal mode that is most robust to sequence variations. (Q35972950) (← links)
- Protein structural transitions and their functional role (Q36017446) (← links)
- KOSMOS: a universal morph server for nucleic acids, proteins and their complexes. (Q36088508) (← links)
- Weak intra-ring allosteric communications of the archaeal chaperonin thermosome revealed by normal mode analysis (Q36246516) (← links)
- Do chaperonins boost protein yields by accelerating folding or preventing aggregation? (Q36510502) (← links)
- Engineering a nanopore with co-chaperonin function (Q36514091) (← links)
- PIM: phase integrated method for normal mode analysis of biomolecules in a crystalline environment (Q36674489) (← links)