Pages that link to "Q51894990"
Jump to navigation
Jump to search
The following pages link to An introduction to kernel-based learning algorithms. (Q51894990):
Displaying 50 items.
- Improving the Caenorhabditis elegans genome annotation using machine learning (Q21145670) (← links)
- Complex networks govern coiled-coil oligomerization--predicting and profiling by means of a machine learning approach (Q24632790) (← links)
- CAMP: a useful resource for research on antimicrobial peptides (Q24644249) (← links)
- Application of independent component analysis to microarrays (Q24793390) (← links)
- Sleep Spindles as an Electrographic Element: Description and Automatic Detection Methods (Q26740197) (← links)
- Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning (Q27144201) (← links)
- A constructive approach for discovering new drug leads: Using a kernel methodology for the inverse-QSAR problem (Q27998702) (← links)
- The Use of Mobile Devices in Aiding Dietary Assessment and Evaluation (Q28749241) (← links)
- Generative embedding for model-based classification of fMRI data (Q30000950) (← links)
- An Artificial Immune System-Based Support Vector Machine Approach for Classifying Ultrasound Breast Tumor Images (Q30373284) (← links)
- Decoding temporal structure in music and speech relies on shared brain resources but elicits different fine-scale spatial patterns (Q30396165) (← links)
- Support Vector Machines Trained with Evolutionary Algorithms Employing Kernel Adatron for Large Scale Classification of Protein Structures. (Q30396521) (← links)
- Structure based function prediction of proteins using fragment library frequency vectors (Q30423467) (← links)
- Multivariate activation and connectivity patterns discriminate speech intelligibility in Wernicke's, Broca's, and Geschwind's areas (Q30435575) (← links)
- An analysis of the accuracy of wearable sensors for classifying the causes of falls in humans (Q30524238) (← links)
- Kernel approaches for differential expression analysis of mass spectrometry-based metabolomics data. (Q30935991) (← links)
- Kernel-based distance metric learning for microarray data classification (Q31044239) (← links)
- Predicting phase synchronization in a spiking chaotic CO2 laser. (Q31125087) (← links)
- Adaptation of a support vector machine algorithm for segmentation and visualization of retinal structures in volumetric optical coherence tomography data sets (Q31128693) (← links)
- Segmentation of three-dimensional retinal image data (Q31134622) (← links)
- IsoSVM--distinguishing isoforms and paralogs on the protein level (Q33235598) (← links)
- Learning interpretable SVMs for biological sequence classification (Q33244587) (← links)
- SVM clustering (Q33307852) (← links)
- Accurate splice site prediction using support vector machines (Q33319511) (← links)
- Optimal spliced alignments of short sequence reads (Q33358812) (← links)
- Towards zero training for brain-computer interfacing (Q33359623) (← links)
- Support vector machines and kernels for computational biology (Q33381579) (← links)
- KIRMES: kernel-based identification of regulatory modules in euchromatic sequences (Q33434261) (← links)
- Comparative study on the use of analytical software to identify the different stages of breast cancer using discrete temperature data. (Q33435482) (← links)
- Pattern Recognition of Longitudinal Trial Data with Nonignorable Missingness: An Empirical Case Study (Q33545642) (← links)
- A framework for image segmentation using shape models and kernel space shape priors (Q33565832) (← links)
- Comparison of AdaBoost and support vector machines for detecting Alzheimer's disease through automated hippocampal segmentation (Q33584857) (← links)
- Machine learning of accurate energy-conserving molecular force fields. (Q33643510) (← links)
- Identifying endophenotypes of autism: a multivariate approach (Q33720554) (← links)
- Brains in dialogue: decoding neural preparation of speaking to a conversational partner (Q33802864) (← links)
- EEG-based classification for elbow versus shoulder torque intentions involving stroke subjects (Q33831848) (← links)
- ℓ1-penalized linear mixed-effects models for high dimensional data with application to BCI (Q33862156) (← links)
- Alien plant monitoring with ultralight airborne imaging spectroscopy (Q33882763) (← links)
- Towards a user-friendly brain-computer interface: initial tests in ALS and PLS patients (Q33952647) (← links)
- Tracking the unconscious generation of free decisions using ultra-high field fMRI. (Q33961398) (← links)
- Insights into Protein Sequence and Structure-Derived Features Mediating 3D Domain Swapping Mechanism using Support Vector Machine Based Approach. (Q33983023) (← links)
- BLProt: prediction of bioluminescent proteins based on support vector machine and relieff feature selection (Q33995173) (← links)
- Imagery and perception share cortical representations of content and location. (Q34191915) (← links)
- Classification of EEG signals using a multiple kernel learning support vector machine (Q34210176) (← links)
- Led into temptation? Rewarding brand logos bias the neural encoding of incidental economic decisions (Q34222179) (← links)
- Generalized optimal spatial filtering using a kernel approach with application to EEG classification (Q34280194) (← links)
- High classification accuracy for schizophrenia with rest and task FMRI data (Q34295372) (← links)
- Predicting free choices for abstract intentions (Q34333945) (← links)
- Insights from classifying visual concepts with multiple kernel learning (Q34398782) (← links)
- Robust action recognition using multi-scale spatial-temporal concatenations of local features as natural action structures (Q34441863) (← links)