[go: up one dir, main page]

Search a number
-
+
40505600 = 28526329
BaseRepresentation
bin1001101010000…
…1000100000000
32211012220020102
42122201010000
540332134400
64004101532
71001202062
oct232410400
984186212
1040505600
1120956503
12116948a8
138512a15
145545732
1538519d5
hex26a1100

40505600 has 54 divisors (see below), whose sum is σ = 100273530. Its totient is φ = 16199680.

The previous prime is 40505567. The next prime is 40505617. The reversal of 40505600 is 650504.

It can be written as a sum of positive squares in 3 ways, for example, as 5837056 + 34668544 = 2416^2 + 5888^2 .

It is a Harshad number since it is a multiple of its sum of digits (20).

It is an unprimeable number.

It is a pernicious number, because its binary representation contains a prime number (7) of ones.

It is a polite number, since it can be written in 5 ways as a sum of consecutive naturals, for example, 3236 + ... + 9564.

Almost surely, 240505600 is an apocalyptic number.

40505600 is a gapful number since it is divisible by the number (40) formed by its first and last digit.

It is an amenable number.

It is a practical number, because each smaller number is the sum of distinct divisors of 40505600, and also a Zumkeller number, because its divisors can be partitioned in two sets with the same sum (50136765).

40505600 is an abundant number, since it is smaller than the sum of its proper divisors (59767930).

It is a pseudoperfect number, because it is the sum of a subset of its proper divisors.

40505600 is an equidigital number, since it uses as much as digits as its factorization.

40505600 is an odious number, because the sum of its binary digits is odd.

The sum of its prime factors is 6355 (or 6336 counting only the distinct ones).

The product of its (nonzero) digits is 600, while the sum is 20.

The square root of 40505600 is about 6364.4009930236. The cubic root of 40505600 is about 343.4301001841.

The spelling of 40505600 in words is "forty million, five hundred five thousand, six hundred".

Divisors: 1 2 4 5 8 10 16 20 25 32 40 50 64 80 100 128 160 200 256 320 400 640 800 1280 1600 3200 6329 6400 12658 25316 31645 50632 63290 101264 126580 158225 202528 253160 316450 405056 506320 632900 810112 1012640 1265800 1620224 2025280 2531600 4050560 5063200 8101120 10126400 20252800 40505600