[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A mouse model of volumetric muscle loss and therapeutic scaffold implantation

Abstract

Skeletal myofibers naturally regenerate after damage; however, impaired muscle function can result in cases when a prominent portion of skeletal muscle mass is lost, for example, following traumatic muscle injury. Volumetric muscle loss can be modeled in mice using a surgical model of muscle ablation to study the pathology of volumetric muscle loss and to test experimental treatments, such as the implantation of acellular scaffolds, which promote de novo myogenesis and angiogenesis. Here we provide step-by-step instructions to perform full-thickness surgical ablation, using biopsy punches, and to remove a large volume of the tibialis anterior muscle of the lower limb in mice. This procedure results in a reduction in muscle mass and limited regeneration capacity; the approach is easy to reproduce and can also be applied to larger animal models. For therapeutic applications, we further explain how to implant bioscaffolds into the ablated muscle site. With adequate training and practice, the surgical procedure can be performed within 30 min.

Key points

  • A surgical procedure for the full-thickness surgical ablation of ~20–60% of the mouse tibialis anterior using a commercial 2–3-mm biopsy punch allows the ablation size to be customized. The model is representative of skeletal muscle loss.

  • The surgically ablated muscles’ uniform geometry does not fully reproduce the complexity of traumatic muscle injury, which includes other injuries associated with trauma to the bone, nerves or tendons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic overview of creating VML injury to the TA muscle using a biopsy punch.
Fig. 2: Intraoperative images of the VML surgical procedure followed by scaffold implantation.
Fig. 3: Histological staining and force measurements of TA muscle at 21 d after muscle ablation (2-mm and 3-mm models).
Fig. 4: Histological staining of TA muscle at 3 weeks after muscle ablation with collagen scaffold implantation.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are derived from our original research study or are included in this paper. Source data are provided with this paper.

References

  1. Grogan, B. F., Hsu, J. R. & Skeletal Trauma Research Consortium. Volumetric muscle loss. J. Am. Acad. Orthop. Surg. 19, S35–S37 (2011).

  2. Mauro, A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493–495 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Caldwell, C. J., Mattey, D. L. & Weller, R. O. Role of the basement membrane in the regeneration of skeletal muscle. Neuropathol. Appl. Neurobiol. 16, 225–238 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Lefaucheur, J. P. & Sebille, A. The cellular events of injured muscle regeneration depend on the nature of the injury. Neuromuscul. Disord. 5, 501–509 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Aguilar, C. A. et al. Multiscale analysis of a regenerative therapy for treatment of volumetric muscle loss injury. Cell Death Discov. 4, 1–11 (2018).

    CAS  Google Scholar 

  6. Corona, B. T., Wenke, J. C. & Ward, C. L. Pathophysiology of volumetric muscle loss injury. Cells Tissues Organs 202, 180–188 (2016).

    Article  PubMed  Google Scholar 

  7. Greising, S. M., Dearth, C. L. & Corona, B. T. Regenerative and rehabilitative medicine: a necessary synergy for functional recovery from volumetric muscle loss injury. Cells Tissues Organs 202, 237–249 (2016).

    Article  PubMed  Google Scholar 

  8. Nakayama, K. H., Shayan, M. & Huang, N. F. Engineering biomimetic materials for skeletal muscle repair and regeneration. Adv. Healthc. Mater. 8, e1801168 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shayan, M. & Huang, N. F. Pre-clinical cell therapeutic approaches for repair of volumetric muscle loss. Bioengineering https://doi.org/10.3390/bioengineering7030097 (2020).

  10. Dziki, J. et al. An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort study. NPJ Regen. Med. 1, 16008 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nakayama, K. H. et al. Treatment of volumetric muscle loss in mice using nanofibrillar scaffolds enhances vascular organization and integration. Commun. Biol. 2, 170 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Anderson, S. E. et al. Determination of a critical size threshold for volumetric muscle loss in the mouse quadriceps. Tissue Eng. Part C. Methods 25, 59–70 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garg, K. et al. Volumetric muscle loss: persistent functional deficits beyond frank loss of tissue. J. Orthop. Res. 33, 40–46 (2015).

    Article  PubMed  Google Scholar 

  14. Willett, N. J. et al. Attenuated human bone morphogenetic protein-2-mediated bone regeneration in a rat model of composite bone and muscle injury. Tissue Eng. C. 19, 316–325 (2013).

    Article  CAS  Google Scholar 

  15. Hu, C. et al. Comparative effects of basic fibroblast growth factor delivery or voluntary exercise on muscle regeneration after volumetric muscle loss. Bioengineering 9, 37 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Larouche, J. A., Wallace, E. C., Spence, B. D., Buras, E. & Aguilar, C. A. Spatiotemporal mapping of immune and stem cell dysregulation after volumetric muscle loss. JCI Insight https://doi.org/10.1172/jci.insight.162835 (2023).

  17. Corona, B. T., Henderson, B. E., Ward, C. L. & Greising, S. M. Contribution of minced muscle graft progenitor cells to muscle fiber formation after volumetric muscle loss injury in wild-type and immune deficient mice. Physiol. Rep. 5, e13249 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pollot, B. E. & Corona, B. T. Volumetric muscle loss. Methods Mol. Biol. 1460, 19–31 (2016).

    Article  PubMed  Google Scholar 

  19. Quarta, M. et al. Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss. Nat. Commun. 8, 15613 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakayama, K. H. et al. Rehabilitative exercise and spatially patterned nanofibrillar scaffolds enhance vascularization and innervation following volumetric muscle loss. NPJ Regen. Med. 3, 16 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Quarta, M. et al. Biomechanics show stem cell necessity for effective treatment of volumetric muscle loss using bioengineered constructs. NPJ Regen. Med. 3, 18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Corona, B. T. et al. Further development of a tissue engineered muscle repair construct in vitro for enhanced functional recovery following implantation in vivo in a murine model of volumetric muscle loss injury. Tissue Eng. Part A 18, 1213–1228 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sicari, B. M. et al. An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci. Transl. Med. 6, 234ra258 (2014).

    Article  Google Scholar 

  24. Zaitseva, T. S. et al. Aligned nanofibrillar scaffolds for controlled delivery of modified mRNA. Tissue Eng. Part A 25, 121–130 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alcazar, C. A., Hu, C., Rando, T. A., Huang, N. F. & Nakayama, K. H. Transplantation of insulin-like growth factor-1 laden scaffolds combined with exercise promotes neuroregeneration and angiogenesis in a preclinical muscle injury model. Biomater. Sci. 8, 5376–5389 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Corona, B. T. et al. Autologous minced muscle grafts: a tissue engineering therapy for the volumetric loss of skeletal muscle. Am. J. Physiol. Cell Physiol. 305, C761–775 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Sirabella, D., De Angelis, L. & Berghella, L. Sources for skeletal muscle repair: from satellite cells to reprogramming. J. Cachexia Sarcopenia Muscle 4, 125–136 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wu, X., Corona, B. T., Chen, X. & Walters, T. J. A standardized rat model of volumetric muscle loss injury for the development of tissue engineering therapies. Biores. Open Access 1, 280–290 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sicherer, S. T., Venkatarama, R. S. & Grasman, J. M. Recent trends in injury models to study skeletal muscle regeneration and repair. Bioengineering https://doi.org/10.3390/bioengineering7030076 (2020).

  30. Owens, B. D. et al. Combat wounds in operation Iraqi Freedom and operation Enduring Freedom. J. Trauma 64, 295–299 (2008).

    PubMed  Google Scholar 

  31. Merritt, E. K. et al. Repair of traumatic skeletal muscle injury with bone-marrow-derived mesenchymal stem cells seeded on extracellular matrix. Tissue Eng. A 16, 2871–2881 (2010).

    Article  CAS  Google Scholar 

  32. Gamba, P. G. et al. Experimental abdominal wall defect repaired with acellular matrix. Pediatr. Surg. Int. 18, 327–331 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. VanDusen, K. W., Syverud, B. C., Williams, M. L., Lee, J. D. & Larkin, L. M. Engineered skeletal muscle units for repair of volumetric muscle loss in the tibialis anterior muscle of a rat. Tissue Eng. A 20, 2920–2930 (2014).

    Article  CAS  Google Scholar 

  34. Carleton, M. M., Locke, M. & Sefton, M. V. Methacrylic acid-based hydrogels enhance skeletal muscle regeneration after volumetric muscle loss in mice. Biomaterials 275, 120909 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Dolan, C. P. et al. The impact of bilateral injuries on the pathophysiology and functional outcomes of volumetric muscle loss. NPJ Regen. Med. 7, 59 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Corona, B. T., Rivera, J. C., Dalske, K. A., Wenke, J. C. & Greising, S. M. Pharmacological mitigation of fibrosis in a porcine model of volumetric muscle loss injury. Tissue Eng. A 26, 636–646 (2020).

    Article  CAS  Google Scholar 

  37. Greising, S. M. et al. Unwavering pathobiology of volumetric muscle loss injury. Sci. Rep. 7, 13179 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Novakova, S. S. et al. Repairing volumetric muscle loss in the ovine peroneus tertius following a 3-month recovery. Tissue Eng. A 26, 837–851 (2020).

    Article  CAS  Google Scholar 

  39. Ibrahim, M. M. et al. Modifying hernia mesh design to improve device mechanical performance and promote tension-free repair. J. Biomech. 71, 43–51 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Langford, D. J. et al. Coding of facial expressions of pain in the laboratory mouse. Nat. Methods 7, 447–449 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Clark, A. et al. Myogenic tissue nanotransfection improves muscle torque recovery following volumetric muscle loss. NPJ Regen. Med. 7, 63 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakayama, K. H. et al. Aligned-braided nanofibrillar scaffold with endothelial cells enhances arteriogenesis. ACS Nano 9, 6900–6908 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research received funding from the Alliance for Regenerative Rehabilitation Research and Training (AR3T), which is supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institute of Neurological Disorders and Stroke (NINDS) and National Institute of Biomedical Imaging and Bioengineering (NIBIB) of the National Institutes of Health under Award Number P2CHD086843. This study was supported by grants to N.F.H. from the US National Institutes of Health (R01 HL142718, R41HL170875 and R21 HL172096-01), the National Science Foundation (1829534 and 2227614) and the Department of Veterans Affairs (RX001222 and 1I01BX004259). N.F.H is a recipient of a Research Career Scientist award (IK6BX006309) from the Department of Veterans Affairs. K.H.N. was supported by grants from the National Institutes of Health (R01AR080150, R00HL136701) and AR3T (CNVA00048860).

Author information

Authors and Affiliations

Authors

Contributions

C.A., C.H., M.Q. and K.H.N. optimized the muscle ablation model and scaffold implantation procedure. G.C. and A.H.-P.C provided technical assistance with tissue histology. N.F.H. and T.A.R. interpreted the data. C.A., C.H. and N.F.H. planned and wrote the manuscript, with input from all authors. All authors gave approval for the final version to be published.

Corresponding author

Correspondence to Ngan F. Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Kimberley Huey, Pablo Fernandez-Marcos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Hu, C. et al. Bioengineering 9, 37 (2022): https://doi.org/10.3390/bioengineering9010037

Alcazar, C. A. et al. Biomat. Sci. 8, 5376–5389 (2020): https://doi.org/10.1039/d0bm00990c

Quarta, M. et al. NPJ Regen. Med. 3, 18 (2018): https://doi.org/10.1038/s41536-018-0057-0

Quarta, M. et al. Nat. Commun. 8, 15613 (2017): https://doi.org/10.1038/ncomms15613

Supplementary information

Reporting Summary

Supplementary Video 1

Video showing the surgical procedure of collecting the TA muscle at 3 weeks after induction of VML.

Source data

Source Data Fig. 3

Statistical source data.

Source Data Table 1

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Chiang, G., Chan, A.HP. et al. A mouse model of volumetric muscle loss and therapeutic scaffold implantation. Nat Protoc (2024). https://doi.org/10.1038/s41596-024-01059-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-01059-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing