ICAM1
Внешний вид
ICAM1 (ингл. ) — аксымы, шул ук исемдәге ген тарафыннан кодлана торган югары молекуляр органик матдә.[41][42]
Искәрмәләр
[үзгәртү | вики-текстны үзгәртү]- ↑ 1,0 1,1 UniProt
- ↑ 2,00 2,01 2,02 2,03 2,04 2,05 2,06 2,07 2,08 2,09 2,10 2,11 2,12 2,13 2,14 2,15 2,16 2,17 2,18 2,19 2,20 2,21 2,22 2,23 2,24 2,25 2,26 2,27 2,28 2,29 2,30 2,31 2,32 2,33 2,34 2,35 2,36 2,37 2,38 2,39 2,40 2,41 2,42 2,43 2,44 2,45 2,46 2,47 2,48 2,49 2,50 2,51 2,52 2,53 2,54 2,55 2,56 2,57 2,58 2,59 2,60 2,61 2,62 2,63 2,64 2,65 GOA
- ↑ 3,0 3,1 3,2 3,3 3,4 3,5 3,6 GOA
- ↑ Holness C. L., Needham L. A., Gatter K. C. et al. Molecular cloning of ICAM-3, a third ligand for LFA-1, constitutively expressed on resting leukocytes // Nature / M. Skipper — NPG, Springer Science+Business Media, 1992. — ISSN 1476-4687; 0028-0836 — doi:10.1038/360481A0 — PMID:1448173
- ↑ Chiang Y., Lee F. S. CBAP functions as a novel component in chemokine-induced ZAP70-mediated T-cell adhesion and migration // PLOS ONE / PLOS ONE Editors — PLoS, 2013. — ISSN 1932-6203 — doi:10.1371/JOURNAL.PONE.0061761 — PMID:23620790
- ↑ Sánchez-Madrid F., Rocha-Perugini V., Gonzalez-Granado J. M. et al. CD81 controls sustained T cell activation signaling and defines the maturation stages of cognate immunological synapses // Mol. Cell. Biol. — ASM, 2013. — ISSN 0270-7306; 1098-5549; 1067-8824 — doi:10.1128/MCB.00302-13 — PMID:23858057
- ↑ Gewirtz A. CD98 and intracellular adhesion molecule I regulate the activity of amino acid transporter LAT-2 in polarized intestinal epithelia, CD98 and Intracellular Adhesion Molecule I Regulate the Activity of Amino Acid Transporter LAT-2 in Polarized Intestinal Epithelia // J. Biol. Chem. / L. M. Gierasch — Baltimore [etc.]: American Society for Biochemistry and Molecular Biology, 2003. — ISSN 0021-9258; 1083-351X; 1067-8816 — doi:10.1074/JBC.M302777200 — PMID:12716892
- ↑ Joachimiak A. Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation // Cell — Cell Press, Elsevier BV, 2003. — ISSN 0092-8674; 1097-4172 — doi:10.1016/S0092-8674(02)01257-6 — PMID:12526797
- ↑ 9,0 9,1 9,2 McClelland A. The major human rhinovirus receptor is ICAM-1 // Cell — Cell Press, Elsevier BV, 1989. — ISSN 0092-8674; 1097-4172 — doi:10.1016/0092-8674(89)90688-0 — PMID:2538243
- ↑ Holness C. L., Needham L. A., Gatter K. C. et al. Molecular cloning of ICAM-3, a third ligand for LFA-1, constitutively expressed on resting leukocytes // Nature / M. Skipper — NPG, Springer Science+Business Media, 1992. — ISSN 1476-4687; 0028-0836 — doi:10.1038/360481A0 — PMID:1448173
- ↑ Chiang Y., Lee F. S. CBAP functions as a novel component in chemokine-induced ZAP70-mediated T-cell adhesion and migration // PLOS ONE / PLOS ONE Editors — PLoS, 2013. — ISSN 1932-6203 — doi:10.1371/JOURNAL.PONE.0061761 — PMID:23620790
- ↑ Lippert D. Defining the membrane proteome of NK cells // J. Mass Spectrom. — Wiley, 2010. — ISSN 1076-5174; 1096-9888 — doi:10.1002/JMS.1696 — PMID:19946888
- ↑ Waterman C. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation // Nat. Cell Biol. — NPG, 2011. — ISSN 1465-7392; 1476-4679 — doi:10.1038/NCB2216 — PMID:21423176
- ↑ Dustin M. L. Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families // Cell — Cell Press, Elsevier BV, 1988. — ISSN 0092-8674; 1097-4172 — doi:10.1016/0092-8674(88)90434-5 — PMID:3349522
- ↑ McClelland A. The major human rhinovirus receptor is ICAM-1 // Cell — Cell Press, Elsevier BV, 1989. — ISSN 0092-8674; 1097-4172 — doi:10.1016/0092-8674(89)90688-0 — PMID:2538243
- ↑ Roberts L. L., Robinson C. M. Mycobacterium tuberculosis infection of human dendritic cells decreases integrin expression, adhesion and migration to chemokines // Immunology — Wiley-Blackwell, 2014. — ISSN 0019-2805; 1365-2567 — doi:10.1111/IMM.12164 — PMID:23981064
- ↑ Teckchandani A., Toida N., Goodchild J. et al. Quantitative proteomics identifies a Dab2/integrin module regulating cell migration // J. Cell Biol. / J. Nunnari — Rockefeller University Press, 2009. — ISSN 0021-9525; 1540-8140 — doi:10.1083/JCB.200812160 — PMID:19581412
- ↑ Atay S. Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells // Exp. Cell. Res. — Academic Press, Elsevier BV, 2011. — ISSN 0014-4827; 1090-2422 — doi:10.1016/J.YEXCR.2011.01.014 — PMID:21276792
- ↑ Buschow S. I., Stoorvogel W., Wauben M. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis // Immunology & Cell Biology — Wiley, 2010. — ISSN 0818-9641; 1440-1711 — doi:10.1038/ICB.2010.64 — PMID:20458337
- ↑ Pisitkun T., Tchapyjnikov D., Knepper M. A. Large-scale proteomics and phosphoproteomics of urinary exosomes // Journal of the American Society of Nephrology / J. Briggs — American Society of Nephrology, 2008. — ISSN 1046-6673; 1533-3450 — doi:10.1681/ASN.2008040406 — PMID:19056867
- ↑ Augustin H. G. Circulating endothelial cell adhesion molecules as diagnostic markers for the early identification of pregnant women at risk for development of preeclampsia // American Journal of Obstetrics and Gynecology — Elsevier BV, 1997. — ISSN 0002-9378; 1097-6868; 1085-8709 — doi:10.1016/S0002-9378(97)70213-8 — PMID:9290466
- ↑ Mayr M., Iozzo R. V., Barallobre-Barreiro J. et al. Glycoproteomics Reveals Decorin Peptides With Anti-Myostatin Activity in Human Atrial Fibrillation // Circulation — Lippincott Williams & Wilkins, 2016. — ISSN 0009-7322; 1524-4539 — doi:10.1161/CIRCULATIONAHA.115.016423 — PMID:27559042
- ↑ Livstone M. S., Thomas P. D., Lewis S. E. et al. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium // Brief. Bioinform. — OUP, 2011. — ISSN 1467-5463; 1477-4054 — doi:10.1093/BIB/BBR042 — PMID:21873635
- ↑ Waterman C. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation // Nat. Cell Biol. — NPG, 2011. — ISSN 1465-7392; 1476-4679 — doi:10.1038/NCB2216 — PMID:21423176
- ↑ Roberts L. L., Robinson C. M. Mycobacterium tuberculosis infection of human dendritic cells decreases integrin expression, adhesion and migration to chemokines // Immunology — Wiley-Blackwell, 2014. — ISSN 0019-2805; 1365-2567 — doi:10.1111/IMM.12164 — PMID:23981064
- ↑ Teckchandani A., Toida N., Goodchild J. et al. Quantitative proteomics identifies a Dab2/integrin module regulating cell migration // J. Cell Biol. / J. Nunnari — Rockefeller University Press, 2009. — ISSN 0021-9525; 1540-8140 — doi:10.1083/JCB.200812160 — PMID:19581412
- ↑ Lippert D. Defining the membrane proteome of NK cells // J. Mass Spectrom. — Wiley, 2010. — ISSN 1076-5174; 1096-9888 — doi:10.1002/JMS.1696 — PMID:19946888
- ↑ Mayr M., Iozzo R. V., Barallobre-Barreiro J. et al. Glycoproteomics Reveals Decorin Peptides With Anti-Myostatin Activity in Human Atrial Fibrillation // Circulation — Lippincott Williams & Wilkins, 2016. — ISSN 0009-7322; 1524-4539 — doi:10.1161/CIRCULATIONAHA.115.016423 — PMID:27559042
- ↑ Atay S. Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells // Exp. Cell. Res. — Academic Press, Elsevier BV, 2011. — ISSN 0014-4827; 1090-2422 — doi:10.1016/J.YEXCR.2011.01.014 — PMID:21276792
- ↑ Buschow S. I., Stoorvogel W., Wauben M. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis // Immunology & Cell Biology — Wiley, 2010. — ISSN 0818-9641; 1440-1711 — doi:10.1038/ICB.2010.64 — PMID:20458337
- ↑ Pisitkun T., Tchapyjnikov D., Knepper M. A. Large-scale proteomics and phosphoproteomics of urinary exosomes // Journal of the American Society of Nephrology / J. Briggs — American Society of Nephrology, 2008. — ISSN 1046-6673; 1533-3450 — doi:10.1681/ASN.2008040406 — PMID:19056867
- ↑ 32,0 32,1 32,2 Dustin M. L. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1 // Nature / M. Skipper — NPG, Springer Science+Business Media, 1989. — ISSN 1476-4687; 0028-0836 — doi:10.1038/341619A0 — PMID:2477710
- ↑ Aranda J. F., Millán J., Kremer L. et al. MYADM controls endothelial barrier function through ERM-dependent regulation of ICAM-1 expression // Mol. Biol. Cell, — American Society for Cell Biology, 2013. — ISSN 1059-1524; 1939-4586; 1044-2030 — doi:10.1091/MBC.E11-11-0914 — PMID:23264465
- ↑ 34,0 34,1 34,2 E Pluskota, S E D'Souza Fibrinogen interactions with ICAM-1 (CD54) regulate endothelial cell survival // FEBS J. — Wiley-Blackwell, 2000. — ISSN 1742-464X; 0014-2956; 1742-4658; 1432-1033 — doi:10.1046/J.1432-1327.2000.01520.X — PMID:10903502
- ↑ Yokomori H. Expression of adhesion molecules on mature cholangiocytes in canal of Hering and bile ductules in wedge biopsy samples of primary biliary cirrhosis // World J. Gastroenterol. — Baishideng Publishing Group, 2005. — ISSN 1007-9327; 2219-2840 — doi:10.3748/WJG.V11.I28.4382 — PMID:16038038
- ↑ Greenwood J., Couraud P., Lyck R. et al. Intracellular domain of brain endothelial intercellular adhesion molecule-1 is essential for T lymphocyte-mediated signaling and migration // J. Immunol. — Baltimore: 2003. — ISSN 0022-1767; 1550-6606 — doi:10.4049/JIMMUNOL.171.4.2099 — PMID:12902516
- ↑ Ottoboni L., Meregalli M., Torrente Y. et al. VCAM-1 expression on dystrophic muscle vessels has a critical role in the recruitment of human blood-derived CD133+ stem cells after intra-arterial transplantation // Blood — American Society of Hematology, Elsevier BV, 2006. — ISSN 0006-4971; 1528-0020 — doi:10.1182/BLOOD-2006-04-018564 — PMID:16809613
- ↑ 38,0 38,1 Yáñez-Mó M., Serrador J. M., Montoya M. C. et al. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes // J. Cell Biol. / J. Nunnari — Rockefeller University Press, 2002. — 13 p. — ISSN 0021-9525; 1540-8140 — doi:10.1083/JCB.200112126 — PMID:12082081
- ↑ Ottoboni L., Meregalli M., Torrente Y. et al. VCAM-1 expression on dystrophic muscle vessels has a critical role in the recruitment of human blood-derived CD133+ stem cells after intra-arterial transplantation // Blood — American Society of Hematology, Elsevier BV, 2006. — ISSN 0006-4971; 1528-0020 — doi:10.1182/BLOOD-2006-04-018564 — PMID:16809613
- ↑ R Giri, Y Shen, M Stins et al. beta-amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1. // American Journal of Physiology: Cell Physiology — 2000. — ISSN 0363-6143; 1522-1563 — doi:10.1152/AJPCELL.2000.279.6.C1772 — PMID:11078691
- ↑ HUGO Gene Nomenclature Commitee, HGNC:29223 (ингл.). әлеге чыганактан 2015-10-25 архивланды. 18 сентябрь, 2017 тикшерелгән.
- ↑ UniProt, Q9ULJ7 (ингл.). 18 сентябрь, 2017 тикшерелгән.
Чыганаклар
[үзгәртү | вики-текстны үзгәртү]- Степанов В.М. (2005). Молекулярная биология. Структура и функция белков. Москва: Наука. ISBN 5-211-04971-3.(рус.)
- Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter (2002). Molecular Biology of the Cell (вид. 4th). Garland. ISBN 0815332181.(ингл.)
Бу — аксым турында мәкалә төпчеге. Сез мәкаләне үзгәртеп һәм мәгълүмат өстәп, Википедия проектына ярдәм итә аласыз. |