[go: up one dir, main page]

Nonlinear feedback stabilization of a rotating body-beam without damping
ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 515-535.
@article{COCV_1999__4__515_0,
     author = {Chentouf, Boumedi\`ene and Couchouron, Jean-Fran\c{c}ois},
     title = {Nonlinear feedback stabilization of a rotating body-beam without damping},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {515--535},
     publisher = {EDP-Sciences},
     volume = {4},
     year = {1999},
     mrnumber = {1713528},
     zbl = {0926.35076},
     language = {en},
     url = {http://www.numdam.org/item/COCV_1999__4__515_0/}
}
TY  - JOUR
AU  - Chentouf, Boumediène
AU  - Couchouron, Jean-François
TI  - Nonlinear feedback stabilization of a rotating body-beam without damping
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 1999
SP  - 515
EP  - 535
VL  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/COCV_1999__4__515_0/
LA  - en
ID  - COCV_1999__4__515_0
ER  - 
%0 Journal Article
%A Chentouf, Boumediène
%A Couchouron, Jean-François
%T Nonlinear feedback stabilization of a rotating body-beam without damping
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 1999
%P 515-535
%V 4
%I EDP-Sciences
%U http://www.numdam.org/item/COCV_1999__4__515_0/
%G en
%F COCV_1999__4__515_0
Chentouf, Boumediène; Couchouron, Jean-François. Nonlinear feedback stabilization of a rotating body-beam without damping. ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 515-535. http://www.numdam.org/item/COCV_1999__4__515_0/

[1] J. Ackermann, Sampled-data control system: Analysis and synthesis, robust system design, Springer-Verlag ( 1985). | MR | Zbl

[2] J. Baillieul and M. Levi, Rotational elastic dynamics. Physica D, 27 ( 1987) 43-62. | MR | Zbl

[3] P. Bénilan, Équations d'évolution dans un espace de Banach quelconque et applications, Thèse, Paris XI, Orsay ( 1972).

[4] P. Bénilan, M.G. Crandal and A. Pazy, Nonlinear evolution equations in Banach spaces, monograph in preparation.

[5] A.M. Bloch and E.S. Titi, On the dynamics of rotating elastic beams, in Proc. Conf. New Trends Syst. theory, Genoa, Italy, July 9-11, 1990, Conte, Perdon, and Wyman, eds., Cambridge, MA: Birkhäuser ( 1990). | MR | Zbl

[6] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hubert, North-Holland, Amsterdam, London ( 1973). | MR | Zbl

[7] H. Brezis, Analyse Fonctionnelle. Théorie et applications, Masson ( 1983). | MR | Zbl

[8] F. Conrad and B. Rao, Decay of solutions of the wave equation in a star-shaped domain with nonlinear boundary feedback. Asymptotic Analysis, 7 ( 1993) 159-177. | MR | Zbl

[9] J.-M. Coron and B. D'Andréa-Novel, Stabilization of a rotating body-beam without damping. IEEE Trans. Automat. Contr., 43 ( 1998) 608-618. | MR | Zbl

[10] M.G. Crandall, Nonlinear semigroups and evolution governed by accretive operators. Pro. Sympo. in pure Math. 45 ( 1986) 305-337. | MR | Zbl

[11] C.M. Dafermos and M. Slemrod, Asymptotic behaviour of non linear contractions semi-groups, J. Func. Anal. 14 ( 1973) 97-106. | MR | Zbl

[12] A. Haraux, Systems Dynamique Dissipatifs et Applications. Collection RMA (17) Masson, Paris ( 1991). | MR | Zbl

[13] V. Jurdjevic and J. P. Quin, Controllability and stability, J. Differential Equations, 28 ( 1978) 381-389. | Zbl

[14] V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl., 69 ( 1990) 33-54. | Zbl

[15] V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson and John Wiley ( 1994). | Zbl

[16] H. Laousy, C.Z. Xu and G. Sallet, Boundary feedback stabilization of a rotating body-beam system. IEEE Trans. Automat. Contr., 41 ( 1996) 241-245. | Zbl

[17] O. Morgül, Orientation and stabilization of a flexible beam attached to a rigid body: Planar motion, IEEE Trans. Automat. Contr., 36 ( 1991) 953-963. | Zbl

[18] O. Morgül, Constant angular velocity control of a rotating flexible structure, in Proc. 2nd Conf., ECC'93., Groningen, Netherlands ( 1993) 299-302.

[19] O. Morgül, Control of a rotating flexible structure. IEEE Trans. Automat. Contr. 39 ( 1994) 351-356. | MR | Zbl

[20] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Verlag, New York ( 1983). | MR | Zbl

[21] M. Pierre, Perturbations localement lipschitziennes et continues d'opérateurs m-accretifs. Proc. Amer. Math. Soc., 58 ( 1976) 124-128. | MR | Zbl

[22] B. Rao, Decay estimate of solution for hybrid system of flexible structures. Euro. J. Appl. Math. 4 ( 1993) 303-319. | MR | Zbl

[23] C.Z. Xu and J. Baillieul, Stabilizability and stabilization of a rotating body-beam system with torque control. IEEE Trans. Automat. Contr. 38 ( 1993) 1754-1765. | MR | Zbl

[24] C.Z. Xu and G. Sallet, Boundary stabilization of a rotating flexible system. Lecture Notes in Control and Information Sciences 185, R.F. Curtain, A. Bensoussan and J.L. Lions, eds., Springer Verlag, New York ( 1992) 347-365. | MR | Zbl

[25] A. Zeidler, Non linear functional analysis and its applications, Vol. 2, Springer Verlag, New York ( 1986). | Zbl