[go: up one dir, main page]

Approximate controllability for a linear model of fluid structure interaction
ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 497-513.
@article{COCV_1999__4__497_0,
     author = {Osses, Axel and Puel, Jean-Pierre},
     title = {Approximate controllability for a linear model of fluid structure interaction},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {497--513},
     publisher = {EDP-Sciences},
     volume = {4},
     year = {1999},
     mrnumber = {1713527},
     zbl = {0931.35014},
     language = {en},
     url = {http://www.numdam.org/item/COCV_1999__4__497_0/}
}
TY  - JOUR
AU  - Osses, Axel
AU  - Puel, Jean-Pierre
TI  - Approximate controllability for a linear model of fluid structure interaction
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 1999
SP  - 497
EP  - 513
VL  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/COCV_1999__4__497_0/
LA  - en
ID  - COCV_1999__4__497_0
ER  - 
%0 Journal Article
%A Osses, Axel
%A Puel, Jean-Pierre
%T Approximate controllability for a linear model of fluid structure interaction
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 1999
%P 497-513
%V 4
%I EDP-Sciences
%U http://www.numdam.org/item/COCV_1999__4__497_0/
%G en
%F COCV_1999__4__497_0
Osses, Axel; Puel, Jean-Pierre. Approximate controllability for a linear model of fluid structure interaction. ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 497-513. http://www.numdam.org/item/COCV_1999__4__497_0/

[1] C. Berenstein, An inverse spectral theorem and its relation to the Pompeiu problem. J. Anal. Math. 37 ( 1980) 128-144. | MR | Zbl

[2] C. Berenstein, The Pompeiu problem, what's new?, Deville R. et al. (Ed.), Complex analysis, harmonic analysis and applications. Proceedings of a conference in honour of the retirement of Roger Gay, June 7-9, 1995, Bordeaux, France. Harlow: Longman. Pitman Res. Notes Math. Ser. 347 ( 1996) 1-11. | MR | Zbl

[3] E. Beretta and M. Vogelius, An inverse problem originating from magnetohydrodynamics. III: Domains with corners of arbitrary angles. Asymptotic Anal. 11 ( 1995) 289-315. | MR | Zbl

[4] H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Collection Math. Appl. Pour la Maîtrise, Masson, Paris ( 1983). | MR | Zbl

[5] L. Brown, B.M. Schreiber and B.A. Taylor, Spectral synthesis and the Pompeiu problem. Ann. Inst. Fourier 23 ( 1973) 125-154. | Numdam | MR | Zbl

[6] P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, 24. Pitman, Boston-London-Melbourne ( 1985). | MR | Zbl

[7] J.-L. Lions, Remarques sur la contrôlabilité approchée, Control of distributed Systems, Span.-Fr. Days, Malaga/Spain 1990, Grupo Anal. Mat. Apl. Univ. Malaga 3 ( 1990) 77-87. | MR | Zbl

[8] J.-L. Lionsand E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Vols. I, II, III, Dunod, Paris ( 1968). | Zbl

[9] J.-L. Lionsand E. Zuazua, Approximate controllability of a hydro-elastic coupled system. ESAIM: Contr. Optim. Calc. Var. 1( 1995) 1-15. | Numdam | MR | Zbl

[10] A. Osses, A rotated direction multiplier technique. Applications to the controllability of waves, elasticity and tangential Stokes control, SIAM J. Cont. Optim., to appear.

[11] A. Osses and J.-P. Puel, Approximate controllability of a linear model in solid-nuid interaction in a rectangle. to appear.

[12] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York. Appl. Math. Sci. 44 ( 1983). | MR | Zbl

[13] J. Serrin, A symmetry problem in potential theory. Arch. Rational. Mech. Anal. 43 ( 1971) 304-318. | MR | Zbl

[14] R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam ( 1977). | Zbl

[15] M. Vogelius, An inverse problem for the equation ∆u = - cu - d. Ann. Inst. Fourier, 44 ( 1994) 1181-1209 | Numdam | MR | Zbl

[16] S.A. Williams, Analyticity of the boundary for Lipschitz domains without the Pompeiu property. Indiana Univ. Math. J. 30 ( 1981) 357-369. | MR | Zbl