[go: up one dir, main page]

数学の特に群論において、与えられた素数 p に対する p-準素群(ピーじゅんそぐん、英: p-primary group)あるいは、p-群(ピーぐん、英: p-group)もしくは準素群(じゅんそぐん、英: primary group)とは、任意の元の位数が p の冪になっているようなねじれ群をいう。すなわち p-群において、各元 g は非負整数 n を適当に選べば g の pn-乗が単位元に一致する。 有限群の場合には、それが p-群であることと、その群の位数 (つまり元の個数) が p の冪であることとは同値になる(コーシーの定理 (群論)より)。以下本項においては有限 p-群に関して述べる。無限アーベル p -群の例についてはプリューファー群の項を、また無限単純 p -群の例についてはの項を参照。

Property Value
dbo:abstract
  • 数学の特に群論において、与えられた素数 p に対する p-準素群(ピーじゅんそぐん、英: p-primary group)あるいは、p-群(ピーぐん、英: p-group)もしくは準素群(じゅんそぐん、英: primary group)とは、任意の元の位数が p の冪になっているようなねじれ群をいう。すなわち p-群において、各元 g は非負整数 n を適当に選べば g の pn-乗が単位元に一致する。 有限群の場合には、それが p-群であることと、その群の位数 (つまり元の個数) が p の冪であることとは同値になる(コーシーの定理 (群論)より)。以下本項においては有限 p-群に関して述べる。無限アーベル p -群の例についてはプリューファー群の項を、また無限単純 p -群の例についてはの項を参照。 (ja)
  • 数学の特に群論において、与えられた素数 p に対する p-準素群(ピーじゅんそぐん、英: p-primary group)あるいは、p-群(ピーぐん、英: p-group)もしくは準素群(じゅんそぐん、英: primary group)とは、任意の元の位数が p の冪になっているようなねじれ群をいう。すなわち p-群において、各元 g は非負整数 n を適当に選べば g の pn-乗が単位元に一致する。 有限群の場合には、それが p-群であることと、その群の位数 (つまり元の個数) が p の冪であることとは同値になる(コーシーの定理 (群論)より)。以下本項においては有限 p-群に関して述べる。無限アーベル p -群の例についてはプリューファー群の項を、また無限単純 p -群の例についてはの項を参照。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 2720019 (xsd:integer)
dbo:wikiPageLength
  • 14435 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 86750231 (xsd:integer)
dbo:wikiPageWikiLink
prop-en:author
  • Rowland, Todd and Weisstein, Eric W. (ja)
  • Rowland, Todd and Weisstein, Eric W. (ja)
prop-en:id
  • title=P-group (ja)
  • title=P-group (ja)
prop-en:title
  • P-group (ja)
  • p-Group (ja)
  • P-group (ja)
  • p-Group (ja)
prop-en:urlname
  • p-Group (ja)
  • p-Group (ja)
prop-en:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 数学の特に群論において、与えられた素数 p に対する p-準素群(ピーじゅんそぐん、英: p-primary group)あるいは、p-群(ピーぐん、英: p-group)もしくは準素群(じゅんそぐん、英: primary group)とは、任意の元の位数が p の冪になっているようなねじれ群をいう。すなわち p-群において、各元 g は非負整数 n を適当に選べば g の pn-乗が単位元に一致する。 有限群の場合には、それが p-群であることと、その群の位数 (つまり元の個数) が p の冪であることとは同値になる(コーシーの定理 (群論)より)。以下本項においては有限 p-群に関して述べる。無限アーベル p -群の例についてはプリューファー群の項を、また無限単純 p -群の例についてはの項を参照。 (ja)
  • 数学の特に群論において、与えられた素数 p に対する p-準素群(ピーじゅんそぐん、英: p-primary group)あるいは、p-群(ピーぐん、英: p-group)もしくは準素群(じゅんそぐん、英: primary group)とは、任意の元の位数が p の冪になっているようなねじれ群をいう。すなわち p-群において、各元 g は非負整数 n を適当に選べば g の pn-乗が単位元に一致する。 有限群の場合には、それが p-群であることと、その群の位数 (つまり元の個数) が p の冪であることとは同値になる(コーシーの定理 (群論)より)。以下本項においては有限 p-群に関して述べる。無限アーベル p -群の例についてはプリューファー群の項を、また無限単純 p -群の例についてはの項を参照。 (ja)
rdfs:label
  • P-群 (ja)
  • P-群 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of