Property |
Value |
dbo:abstract
|
- ド・モアブルの定理(ド・モアブルのていり、英: de Moivre's theorem; ド・モアブルの公式(ド・モアブルのこうしき)ともいう)とは、複素数(特に実数)θ および整数 n に対して が成り立つという、複素数と三角関数に関する定理である。定理の名称はアブラーム・ド・モアブル (Abraham de Moivre) に因むが、彼がこの定理について言及したわけではない。数学的帰納法による証明では、三角関数の加法定理が利用される。 実数 θ と正の整数 n に対してド・モアブルの定理を考えると、左辺を展開し右辺と実部・虚部を比較することにより、n倍角の公式が導出される。すなわち、ド・モアブルの公式は三角関数の n倍角の公式を内在的に含んでいる。 オイラーの公式: より、ド・モアブルの定理は複素指数函数についての指数法則の一つ: が成り立つことを意味している。 (ja)
- ド・モアブルの定理(ド・モアブルのていり、英: de Moivre's theorem; ド・モアブルの公式(ド・モアブルのこうしき)ともいう)とは、複素数(特に実数)θ および整数 n に対して が成り立つという、複素数と三角関数に関する定理である。定理の名称はアブラーム・ド・モアブル (Abraham de Moivre) に因むが、彼がこの定理について言及したわけではない。数学的帰納法による証明では、三角関数の加法定理が利用される。 実数 θ と正の整数 n に対してド・モアブルの定理を考えると、左辺を展開し右辺と実部・虚部を比較することにより、n倍角の公式が導出される。すなわち、ド・モアブルの公式は三角関数の n倍角の公式を内在的に含んでいる。 オイラーの公式: より、ド・モアブルの定理は複素指数函数についての指数法則の一つ: が成り立つことを意味している。 (ja)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 6435 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-ja:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- ド・モアブルの定理(ド・モアブルのていり、英: de Moivre's theorem; ド・モアブルの公式(ド・モアブルのこうしき)ともいう)とは、複素数(特に実数)θ および整数 n に対して が成り立つという、複素数と三角関数に関する定理である。定理の名称はアブラーム・ド・モアブル (Abraham de Moivre) に因むが、彼がこの定理について言及したわけではない。数学的帰納法による証明では、三角関数の加法定理が利用される。 実数 θ と正の整数 n に対してド・モアブルの定理を考えると、左辺を展開し右辺と実部・虚部を比較することにより、n倍角の公式が導出される。すなわち、ド・モアブルの公式は三角関数の n倍角の公式を内在的に含んでいる。 オイラーの公式: より、ド・モアブルの定理は複素指数函数についての指数法則の一つ: が成り立つことを意味している。 (ja)
- ド・モアブルの定理(ド・モアブルのていり、英: de Moivre's theorem; ド・モアブルの公式(ド・モアブルのこうしき)ともいう)とは、複素数(特に実数)θ および整数 n に対して が成り立つという、複素数と三角関数に関する定理である。定理の名称はアブラーム・ド・モアブル (Abraham de Moivre) に因むが、彼がこの定理について言及したわけではない。数学的帰納法による証明では、三角関数の加法定理が利用される。 実数 θ と正の整数 n に対してド・モアブルの定理を考えると、左辺を展開し右辺と実部・虚部を比較することにより、n倍角の公式が導出される。すなわち、ド・モアブルの公式は三角関数の n倍角の公式を内在的に含んでいる。 オイラーの公式: より、ド・モアブルの定理は複素指数函数についての指数法則の一つ: が成り立つことを意味している。 (ja)
|
rdfs:label
|
- ド・モアブルの定理 (ja)
- ド・モアブルの定理 (ja)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is prop-ja:knownFor
of | |
is owl:sameAs
of | |
is foaf:primaryTopic
of | |