[go: up one dir, main page]

Dans la théorie des probabilités, un élément aléatoire est une généralisation de la notion de variable aléatoire à des espaces plus complexes qu'une ligne réelle. Le concept a été introduit par Maurice Fréchet (1948), qui a fait remarquer que le "développement de la théorie des probabilités et l'expansion de ses applications ont amené à la nécessité de passer de schémas où les résultats d'expériences aléatoire peuvent être décrites par des nombres ou par un ensemble fini de nombre, à un schéma où les résultats des expériences représentent, par exemple, des vecteurs, des fonctions, des processus, des champs, des séries, des transformations, ainsi qu'à des ensembles ou à plusieurs ensembles."

Property Value
dbo:abstract
  • Dans la théorie des probabilités, un élément aléatoire est une généralisation de la notion de variable aléatoire à des espaces plus complexes qu'une ligne réelle. Le concept a été introduit par Maurice Fréchet (1948), qui a fait remarquer que le "développement de la théorie des probabilités et l'expansion de ses applications ont amené à la nécessité de passer de schémas où les résultats d'expériences aléatoire peuvent être décrites par des nombres ou par un ensemble fini de nombre, à un schéma où les résultats des expériences représentent, par exemple, des vecteurs, des fonctions, des processus, des champs, des séries, des transformations, ainsi qu'à des ensembles ou à plusieurs ensembles." L'utilisation moderne de l'«élément aléatoire» suppose souvent que l'espace de valeurs est un espace vectoriel topologique, souvent un Banach ou un espace de Hilbert avec un algèbre de sigma naturel de sous-ensembles. (fr)
  • Dans la théorie des probabilités, un élément aléatoire est une généralisation de la notion de variable aléatoire à des espaces plus complexes qu'une ligne réelle. Le concept a été introduit par Maurice Fréchet (1948), qui a fait remarquer que le "développement de la théorie des probabilités et l'expansion de ses applications ont amené à la nécessité de passer de schémas où les résultats d'expériences aléatoire peuvent être décrites par des nombres ou par un ensemble fini de nombre, à un schéma où les résultats des expériences représentent, par exemple, des vecteurs, des fonctions, des processus, des champs, des séries, des transformations, ainsi qu'à des ensembles ou à plusieurs ensembles." L'utilisation moderne de l'«élément aléatoire» suppose souvent que l'espace de valeurs est un espace vectoriel topologique, souvent un Banach ou un espace de Hilbert avec un algèbre de sigma naturel de sous-ensembles. (fr)
dbo:isPartOf
dbo:wikiPageID
  • 9935180 (xsd:integer)
dbo:wikiPageLength
  • 13201 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 181783801 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:art
  • random element (fr)
  • random element (fr)
prop-fr:id
  • 701430379 (xsd:integer)
prop-fr:lang
  • en (fr)
  • en (fr)
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • Dans la théorie des probabilités, un élément aléatoire est une généralisation de la notion de variable aléatoire à des espaces plus complexes qu'une ligne réelle. Le concept a été introduit par Maurice Fréchet (1948), qui a fait remarquer que le "développement de la théorie des probabilités et l'expansion de ses applications ont amené à la nécessité de passer de schémas où les résultats d'expériences aléatoire peuvent être décrites par des nombres ou par un ensemble fini de nombre, à un schéma où les résultats des expériences représentent, par exemple, des vecteurs, des fonctions, des processus, des champs, des séries, des transformations, ainsi qu'à des ensembles ou à plusieurs ensembles." (fr)
  • Dans la théorie des probabilités, un élément aléatoire est une généralisation de la notion de variable aléatoire à des espaces plus complexes qu'une ligne réelle. Le concept a été introduit par Maurice Fréchet (1948), qui a fait remarquer que le "développement de la théorie des probabilités et l'expansion de ses applications ont amené à la nécessité de passer de schémas où les résultats d'expériences aléatoire peuvent être décrites par des nombres ou par un ensemble fini de nombre, à un schéma où les résultats des expériences représentent, par exemple, des vecteurs, des fonctions, des processus, des champs, des séries, des transformations, ainsi qu'à des ensembles ou à plusieurs ensembles." (fr)
rdfs:label
  • Random element (en)
  • Élément aléatoire (fr)
  • Випадковий елемент (uk)
  • Случайный элемент (ru)
  • 随机元素 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of